

ASSESSMENT REPORT - Project: 16227.00

Niagara Region Wind Farm Project Acoustic Immission Audit - Phase 2

Prepared for:

1021702 B.C. Ltd

as general partner for and behalf of FWRN L.P. 36 rue Lajeunesse Kinsgey Falls Quebec J0A 1B0

Prepared by:

Ibbtida Khan

A. Monco

Allan Munro, B.A.Sc., P.Eng.

Payam Ashtiani, B.A.Sc., P.Eng.

24 May 2019

Table of Contents

List	of Tables	3
List	of Figures	3
List	of Appendices	4
1	Introduction	6
2	Facility Description	6
3	Audit Details	6
3.1	Test Equipment	7
3.2	Measurement Methodology	8
3.3	Measurement Location	10
3.4	Sample size Reporting Requirements	11
3.4.1	RAM-I Sample Size Requirements	11
3.5	Weather Conditions	12
3.6	Operational Conditions	12
4	Sound Level Limits	13
5	Audit Results	13
6	Discussion	18
6.1	Overall Sound Level	18
6.2	Tonality	22
7	Assessment of Compliance	23
8	Conclusion	23
9	References	24

List of Tables

Table 1: Monitoring Period for Each Receptor	
Table 2: Equipment Details Table 3: Receptor Measurement Locations	
Table 4: MECP Sound Level Limits for Wind Turbines	
Table 5: M1153 Sound levels measured for Turbine ON and OFF	
Table 5: M1133 Sound levels measured for Turbine ON and OFF	
Table 6: M2703 Sound levels measured for Turbine ON and OFF	
Table 8 M0616 Sound levels measured for Turbine ON and OFF	
Table 9: M0085 Sound levels measured for Turbine ON and OFF	
Table 10: Assessment Table	
list of Figures	
List of Figures	
Figure 1: M1153 - Measured Sound Levels for Turbine ON and Background vs Wind	
Speed	15
Figure 2: M2705 - Measured Sound Levels for Turbine ON and Background vs Wind	
Speed	16
Figure 3: M1602 - Measured Sound Levels for Turbine ON and Background vs Wind	
Speed	16
Figure 4: M0616 - Measured Sound Levels for Turbine ON and Background vs Wind	
Speed	17
Figure 5: M0085 - Measured Sound Levels for Turbine ON and Background vs Wind	
Speed	
Figure 6: M1153 Turbine Levels compared to MECP Limits	
Figure 7: M2705 Turbine Levels compared to MECP Limits	
Figure 8: M1602 Turbine Levels compared to MECP Limits	
Figure 9: M0616 Turbine Levels compared to MECP Limits	
Figure 10: M0085 Turbine Levels compared to MECP Limits	. 22

List of Appendices

```
Appendix A – Location Details
       Figure A.1 – Site Plan
       Figure A.2 – Monitor and Receptor Location – M1153
       Figure A.3 – Monitor and Receptor Location – M2705
       Figure A.4 – Monitor and Receptor Location – M1602
       Figure A.5 – Monitor and Receptor Location – M0616
       Figure A.6 – Monitor and Receptor Location – M0085
       Figure A.7 – Site Photo – M1153
       Figure A.8 – Site Photo – M2705
       Figure A.9 – Site Photo – M1602
       Figure A.10 – Site Photo – M0616
       Figure A.11 – Site Photo – M0085
Appendix B – Wind Rose
       Figure B.1 – Wind Rose – M1153
       Figure B.2 – Wind Rose – M2705
       Figure B.3 – Wind Rose – M1602
       Figure B.4 – Wind Rose – M0616
       Figure B.5 – Wind Rose – M0085
Appendix C – Statement from Operator
Appendix D – Summary of Tonality Assessment
Appendix E – Turbine Status
Appendix F – Receptor Selection Rationale
Appendix G – Calibration Records
Appendix H – I-Audit Checklist
```

Appendix I – M1153 Distance Correction Calculation

Executive Summary

Aercoustics Engineering Limited ("Aercoustics") has been retained by 1021702 B.C. Ltd as general partner for and on behalf of FWRN L.P. to complete the acoustic immission audit outlined in the Renewable Energy Approval ("REA") for the Niagara Region Wind Farm ("NRWF"). NRWF operates under REA #4353-9HMP2R, issued on November 6, 2014.

This report details the 2nd measurement campaign of the NRWF immission audit. Monitoring near receptors O1153, V2705, O1602, O0616 and O0085 spanned the following dates:

Location	Monitoring Start Date	Monitoring End Date	Monitoring Duration (weeks)
O1153	November 5 th , 2018	February 19 th , 2019	15
V2705	October 26 th , 2018	April 8 th , 2019	25
O1602	November 29 th , 2018	April 8 th , 2019	19
O0616	October 29 th , 2018	April 8 th , 2019	25
O0085	November 5 th , 2018	April 8 th , 2019	22

The audit has been completed as per the methodology outlined in Parts D and E5.5 RAM-I (Revised Assessment Methodology) of the "MECP Compliance Protocol for Wind Turbine Noise" (Updated: April 21, 2017).

The measured turbine-only noise impact at the audit locations was compared to the Ministry of Environment Conservation and Parks ("MECP") sound level limits. The measured turbine-only levels were found to be in compliance with the applicable sound level limits at receptors O1153, V2705, O1602 and O0616 during the audit.

The measured levels were found to be non-compliant with the applicable sound level limits at receptor O0085 during the audit. It should be noted that the Phase 1 audit at this location was found to be compliant. It is Aercoustics understanding that Boralex in partnership with the turbine manufacturer Enercon has undertaken turbine inspections for physical components as well as turbine operating parameters. Further E-Audit testing is underway to investigate the source of the non-compliance with the MECP sound level limits.

1 Introduction

Aercoustics Engineering Limited ("Aercoustics") has been retained by 1021702 B.C. Ltd as general partner for and on behalf of FWRN L.P. to complete the 2nd acoustic immission audit outlined in the Renewable Energy Approval ("REA") for the Niagara Region Wind Farm ("NRWF"). NRWF operates under REA #4353-9HMP2R, issued on November 6, 2014, further modified on November 23, 2015, May 6, 2016 and May 12, 2016 [1].

The report has been prepared to facilitate submission to the MECP, in compliance with acoustic audit conditions outlined in the facility's REA (#4353-9HMP2R) section E (Wind Turbine Acoustic Audit – Immission). The audit has been completed as per the methodology outlined in Parts D and E5.5 RAM-I (Revised Assessment Methodology) of the Ontario Ministry of Environment, Conservation and Parks "MECP Compliance Protocol for Wind Turbine Noise" (Updated: April 21, 2017). This report outlines the measurement methodology, results, and a comparison of the turbine-only sound contribution to the MECP sound level limits.

2 Facility Description

The Niagara Region Wind Farm Project utilizes 77 Enercon turbines (Model E 101) wind turbines for power generation, each having a nameplate capacity ranging from 2.9MW and 3.0MW respectively. Each turbine has a hub height of 124 meters and a rotor diameter of 101 meters. The facility operates 24 hours per day, 7 days per week.

An overall site plan is provided in Figure A.01.

3 Audit Details

The acoustic audit was conducted at receptors O1153, V2705, O1602, O0616 and O0085¹. Monitoring at M1153, M2705, M1602, M0616 and M0085 spanned the following dates, summarized in Table 1.

Table 1: Monitoring Period for Each Receptor

Location	Monitoring Start Date	Monitoring End Date	Monitoring Duration (weeks)
O1153	November 5 th , 2018	February 19 th , 2019	15
V2705	October 26 th , 2018	April 8 th , 2019	25
O1602	November 29 th , 2018	April 8 th , 2019	19
O0616	October 29 th , 2018	April 8 th , 2019	25
O0085	November 5 th , 2018	April 8 th , 2019	22

¹ Receptor IDs taken from the Noise Assessment Report by K. Ganesh and K. Mallinen, dated April 08, 2016 [3]

The following sections detail the test equipment, measurement methodology, measurement locations, and environmental conditions during the audit.

3.1 **Test Equipment**

The equipment, both acoustic and non-acoustic, used at each audit location for the measurement campaign is as follows.

- One (1) Type 1 sound level meter, with microphone and pre-amplifier that meet the MECP protocol specifications outlined in Part D, Section D2.1 - Acoustic Instrumentation.
- One (1) primary and one (1) secondary windscreen for the microphone. The 1/3 octave band insertion loss of the secondary windscreen has been tested and was accounted for in the data analysis.
- One (1) anemometer programmed to sample weather data every 0.5 seconds.
 The anemometer was located 10m above grade, as defined by Section D3.4.
 Performance specifications comply with Part D, Section D.2.2 of the MECP protocol.

The following table lists the specific model and serial numbers for the equipment used during the measurement campaign. Calibration records for equipment used during the measurement campaign are provided in Appendix G.

Table 2: Equipment Details

Location	Equipment	Serial Number
	NI9234 Data Acquisition Card	1C009CD
	PCB 480E09 Signal Conditioner	32814
M1153	PCB 377B02 Microphone	174130
PCB 37/B02 Microphone PCB 426E01 Pre-Amplifier Vaisala WXT 520		051461
	Vaisala WXT 520	M0410642
	NI9234 Data Acquisition Card	1A5E7FC
	PCB 480E09 Signal Conditioner	34423
M2705	PCB 377B02 Microphone	167926
	PCB 426E01 Pre-Amplifier	044003
	Vaisala WXT 536	M4910194
	NI9234 Data Acquisition Card	1AE459C & 1CAF718
	PCB 480E09 Signal Conditioner	33661
M1602	PCB 377B02 Microphone	155523
	PCB 426E01 Pre-Amplifier	039195
	Vaisala WXT 536	M4910193
	NI9234 Data Acquisition Card	1CAF75B
	PCB 480E09 Signal Conditioner	33370
M0616	PCB 377B02 Microphone	156314
	PCB 426E01 Pre-Amplifier	039843
	Vaisala WXT 520	K0630016
	NI9234 Data Acquisition Card	1C97512
	PCB 480E09 Signal Conditioner	33660
M0085	PCB 377B02 Microphone	177759
	PCB 426E01 Pre-Amplifier	051463
	Vaisala WXT 520	L3020298

The sound level meter, microphone, and pre-amplifier were calibrated before and after the measurement campaign using a type 4231 Brüel & Kjær acoustic calibrator.

3.2 Measurement Methodology

For the duration of the measurement campaign, acoustic and anemometer data was logged simultaneously in one-minute intervals. The acoustic data included A-weighted overall equivalent sound levels (LA_{eq}), percentile statistical levels (L90), and 1/3 octave band levels between 20 Hz and 10,000 Hz. The microphone was placed at a measurement height of 4.5 m above grade, at least 5 metres away from any large reflecting surfaces, in direct line of sight to the nearest turbines, and as far away as practically possible from

trees or other foliage. The recorded weather data included average wind direction, wind speed, temperature, relative humidity, and atmospheric pressure. The maximum wind speed for each one-minute interval was also stored to filter the data for wind gusting.

To account for the effect of wind speed on the measured sound level, measurement intervals are sorted into integer wind bins based on the measured 10 m wind speeds. Each bin ranges from 0.5 m/s below to 0.5 m/s above each respective wind bin (i.e. 5 m/s wind bin represents all intervals with average wind speeds between 4.5 m/s and 5.5 m/s).

A one-minute measurement interval was considered valid if:

- The interval occurred between 10pm 5am
- No precipitation was detected 60 minutes before and 60 minutes after the interval
- The ambient temperature was above -20°C
- Either all nearby turbines were on (for Turbine ON measurements), or all nearby turbines were off (for ambient measurements). The list of turbines parked for ambient measurements is provided in Section 3.6.
- The measured LA_{eq} was no more than 10 dB greater than the L90 value
- The closest wind turbine was producing approximately 85% or more of its rated power output
- The measurement location was downwind (+/- 45 degrees from the line of sight between the turbine and measurement location) from the wind turbine during the measurement interval. The downwind direction is determined using the closest turbine's yaw angle output, also known as nacelle position.

These filters are based on the requirements outlined in Part D of the Protocol as well as the measurement equipment specifications. The intention is to exclude measurement intervals where the data reliability is reduced due to transient noise intrusions (such as vehicle pass-bys), environmental conditions, or equipment operating outside of its specifications.

Section D3.8.2 of the Protocol states that weather conditions should be similar between Background and Total Noise measurement intervals. By virtue of the minimum turbine power requirement, hub-height wind speeds are present in all Total Noise Intervals. High hub-height wind speeds were found to produce increased wind-related noise, elevating the measured noise levels. Accordingly, a hub-height windspeed filter was applied to Background data at monitoring locations to better match the environmental conditions present in the Total Noise data. Lower hub-height wind speed thresholds for Background intervals have been used to increase the available data counts. These lower thresholds

represent a conservative approach, as the Background sound level is expected to be lower during periods of low hub-height wind speed. Applying a lower hub-height wind speed threshold to the Background data therefore has the effect of over-estimating the calculated Turbine-Only sound levels.

3.3 Measurement Location

Receptors O1153, V2705, O1602, O0616, and O0085 were chosen to be representative of the worst-case impact of the facility. These locations were chosen based on the MECP selection requirements communicated in the NRWF REA. All five receptors are located in the predominant downwind direction of the facility. O1153, V2705, O1602, O0616, and O0085 have a predicted impact of 39.9 dBA, 39.7 dBA, 39.5 dBA, 39.7 dBA and 39.5 dBA respectively, as per level predicted from an "As Built" noise model based on the original CadnaA noise prediction model. The following describes the measurement locations in relation to the above listed receptors:

- M1153: Measurement equipment was placed on the open lawn to the west of O1153, 428 m to the nearest turbine (T20), on the west side of Bird Road. The predicted level based on the acoustic model at M1153 is 41.6 dBA. Monitor M1153 was erected in a location that was closer to the wind project than their representative receptor due to site specific setup limitations (trees, pond and horse enclosure). The effect of the closer measurement location is a shorter source-to-receiver distance to the closest turbines and therefore a higher sound level from the turbines at the monitor location compared to the receptor location.
- M2705: Measurement equipment was placed on the vacant lot property of V2705, 603 m to the nearest turbine (T04), on the north side of Concession Road Four. The predicted level based on the acoustic model at M2705 is 39.7 dBA.
- M1602: Measurement equipment was placed in an open field on the property of and to the west of O1602, 539 m to the closest turbine (T28), on the west side of Comfort Road. The predicted level based on the acoustic model at M1602 is 39.7 dBA.
- M0616: Measurement equipment was placed in an open field on the property of and to west of O0616, 592 m to the closest turbine (T93), on the south side of Concession Road Four. The predicted level based on the acoustic model at M0616 is 39.8 dBA.
- M0085: Measurement equipment was placed in an open field on the property of and to the west of O0085, 540 m to the closest turbine (T08), on the south side of Concession Road Three. The predicted level based on the acoustic model at M0085 is 39.7 dBA.

The following table provides a summary of the receptor locations. Detailed site plans showing the receptor and audit locations are attached in Appendix A.

Audit Receptor ID V2705 O1602 O0616 O0085 Nearest Turbine ID 17T 17T 17T 17T 17T **UTM Coordinates** 627870mE 618600mE 621067mE 622682mE 614752mE (X,Y)4749725mN 4768233mN 4769629mN 4767679mN 4765425mN Receptor Distance to Nearest 584m 603m 558m 617m 554m Turbine 39.7 Predicted Level dBA* 39.9 39.5 39.7 39.5 17T 17T 17T 17T 17T **UTM Coordinates** 620902mE 627870mE 622530mE 618528mE 614682mE (X,Y)Monitor 4749669mN 4768233mN 4769635mN 4767683mE 4765434mN Distance to Nearest 428m 603m 539m 592m 540m Turbine Predicted Level dBA** 41.6 39.7 39.7 39.8 39.7

Table 3: Receptor Measurement Locations

3.4 Sample size Reporting Requirements

As per Section D3.8 of the MECP protocol, at least 120 data points in each wind bin are required for Turbine ON measurements, and 60 data points for the ambient measurements between 4-7 m/s integer wind speeds inclusively (10m height).

The sample size requirements of 120 data points for Turbine ON and 60 data points for the ambient measurements between 4-7 m/s integer wind speeds has been satisfied for receptors O1153, O1602 and O0616.

The Revised Assessment Methodology for I-Audits (RAM-I) may allow for a lower amount of data points to be used in the analysis, provided that the quality of data remains high. RAM-I analysis was conducted as per Section 5.5 of the Protocol. This methodology is employed in cases where insufficient data is collected despite sound monitoring lasting longer than 6 weeks.

3.4.1 RAM-I Sample Size Requirements

The RAM-I assessment methodology reduces the sample size requirements, the Protocol states:

"The Ministry may accept a reduced number of data points for each wind speed bin with appropriate justification. [...] The acceptable number of data points will be influenced by the quality of the data (standard deviation)" {Section E 5.5 (5)}

The threshold of 60 data points for Turbine ON measurements and 30 data points for Turbine OFF measurements is used in this assessment.

The range of wind bins which may be used to assess compliance is expanded to include a minimum of one of the following conditions as outlined in Section E 5.5(1):

^{*} Predicted level from Sound Level Prediction Results, [Modified Model for As-built] 77 WTGs - Stantec [3]

^{**} Predicted level from Aercoustics' acoustic model

- a. "Three (3) of the wind speed bins between 1 and 7 m/s (inclusive), or
- b. Two (2) of the wind speed bins between 1 and 4 m/s (inclusive)"

The RAM-I sample size requirement of 60 data points for Turbine ON and 30 data points for ambient measurements for 3 wind speed bins has been satisfied for receptor V2705 and O0085 in wind speed bins between 1 and 7m/s (inclusive).

3.5 **Weather Conditions**

Ambient conditions encountered over the measurement campaign were as follows:

Ambient Humidity: 39% to 92%
Ambient Temperature: -22°C to 14°C
10m Wind Speed: 0 m/s to 23 m/s

Historically, the predominant wind direction is from the southwest for this site. The wind direction varied over the course of the audit campaign. Wind roses have been provided in Appendix B that show the measured direction based on closest turbine yaw angle compared to 10m height wind speeds at each receptor for valid Turbine ON. The wind rose for ambient measurement intervals show the measured 10m wind speed at each receptor compared to 10m height wind direction. Wind directions shown on the wind roses indicate the direction the wind is coming from.

3.6 **Operational Conditions**

Turbine operational data for the duration of the measurement campaign was supplied by NRWF. Measurement data at each receptor was filtered to include only intervals when all turbines in the immediate vicinity were operational, or, in the case of the ambient noise measurements, were not operational. The turbines included in this study were chosen such that when they are turned off, the partial impact of the remaining turbines was less than 30dBA; 10dB below the sound level limit. The specific turbines parked for ambient measurements were T4, T5, T8 T20, T27, T28, T52, T53, T56, T58, T62, T63, T66, T85, T93, T94, T96, and T99.

4 Sound Level Limits

The purpose of the sound measurements was to confirm whether the sound emitted by the wind facility is in compliance with the MECP allowable sound level limits. The MECP sound level limits for wind turbines vary with wind speed defined at a 10 m height. The details of the sound level limits are presented in Table 4 below.

Table 4: MECP Sound Level Limits for Wind Turbines

Wind speed at 10m height [m/s]	MECP Sound level limit [dBA]
≤ 4	40
5	40
6	40
7	43

As per section D6 of the MECP Protocol, if the background sound levels are greater than the applicable exclusion limits then the applicable limits are the background sound levels without extraneous noise sources.

5 Audit Results

The following tables detail the sound levels measured at all five receptors when all the nearby turbines were on (Turbine ON) and when all the nearby turbines were off (Turbine OFF). Wind bins which satisfy the RAM-I sample size requirements are highlighted in grey in Tables 5, 6, 7, 8 and 9. The Turbine ON sound level presented was filtered such that only data when the closest turbine was generating 85% power or greater and the receptor was in a downwind condition from the closest turbine was included.

Table 5: M1153 Sound levels measured for Turbine ON and OFF

Wind Speed at	Turbine ON			Tur	Turbine		
10m Height	Number of	LAeq	Std Dev	Number of	LAeq	Std Dev	ONLY*
(m/s)	Samples	[dBA]	[dBA]	Samples	[dBA]	[dBA]	OINLI
0	0	-	-	143	28.7	3.3	-
1	3	41.8	0.1	362	28.4	3.6	*
2	40	42.5	0.5	112	28.9	2.9	*
3	180	42.6	0.7	157	32.5	3.8	40
4	160	43.1	1.0	293	36.9	3.2	40
5	356	44.0	1.2	302	39.4	3.1	40
6	649	45.9	1.8	248	43.5	2.4	40
7	520	48.6	2.4	156	46.8	2.4	42

^{*}Insufficient amount of data points as per RAM-I protocol

^{**}Turbine ONLY levels are given a distance correction (-1.7dB); Refer to Section 5.1 for more detail.

Table 6: M2705 Sound levels measured for Turbine ON and OFF

Wind Speed at	Turbine ON			Tur	Turbine		
10m Height	Number of	LAeq	Std Dev	Number of	LAeq	Std Dev	ONLY
(m/s)	Samples	[dBA]	[dBA]	Samples	[dBA]	[dBA]	OINLI
0	0	-	-	0	-	-	-
1	0	-	-	0	-	-	-
2	1	39.9	-	0	-	-	*
3	70	41.0	0.9	0	-	-	*
4	188	41.4	0.7	44	36.0	1.3	40
5	395	42.4	0.9	127	38.7	2.0	40
6	478	44.9	1.3	119	43.2	1.9	40
7	625	48.5	1.6	62	47.7	1.9	41

^{*}Insufficient amount of data points as per RAM-I protocol

Table 7: M1602 Sound levels measured for Turbine ON and OFF

Wind Speed at	Turbine ON			Tur	Turkina		
10m Height	Number of	LAeq	Std Dev	Number of	LAeq	Std Dev	Turbine ONLY
(m/s)	Samples	[dBA]	[dBA]	Samples	[dBA]	[dBA]	OINLI
0	0	-	-	127	39.7	6.4	-
1	0	-	-	370	37.8	5.5	-
2	0	-	-	194	37.1	5.2	-
3	11	42.8	1.4	120	38.2	5.1	*
4	159	42.3	1.3	272	38.0	4.1	40
5	286	42.8	1.0	269	39.2	3.0	40
6	320	44.8	1.0	212	42.9	2.1	40
7	399	48.3	1.4	234	46.6	1.8	43

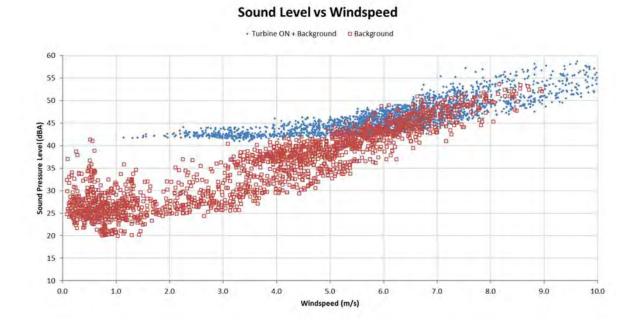
^{*}Insufficient amount of data points as per RAM-I protocol

Table 8 M0616 Sound levels measured for Turbine ON and OFF

Wind Speed at	Turbine ON			Tur	Turbine		
10m Height	Number of	LAeq	Std Dev	Number of	LAeq	Std Dev	ONLY
(m/s)	Samples	[dBA]	[dBA]	Samples	[dBA]	[dBA]	OIVE
0	0	-	-	116	29.1	3.8	*
1	9	40.9	0.5	476	31.2	4.5	*
2	73	40.5	0.8	273	32.0	4.0	40
3	138	41.0	0.9	290	32.8	3.3	40
4	146	41.8	0.8	339	36.3	2.8	40
5	260	43.5	1.0	273	40.8	2.3	40
6	204	46.1	1.2	202	44.8	1.8	40
7	222	49.4	1.1	95	48.2	1.5	43

Note: Insufficient amount of data points as per RAM-I protocol in all wind bins

[‡] Higher uncertainty on calculated Turbine ONLY levels in cases where the measured ambient sound level (Turbine OFF) is within 1 dB of the measured Turbine ON level


Table 9: M0085 Sound levels measured for Turbine ON and OFF

Wind Speed at	Turbine ON			Tur	Turbine		
10m Height	Number of	LAeq	Std Dev	Number of	LAeq	Std Dev	ONLY
(m/s)	Samples	[dBA]	[dBA]	Samples	[dBA]	[dBA]	ONLI
0	0	-	-	114	31.6	2.2	-
1	10	42.5	1.1	370	32.5	3.0	*
2	4	42.0	0.2	290	33.8	3.3	*
3	129	42.0	0.5	386	32.7	2.4	42
4	101	42.3	0.5	410	35.5	2.7	41
5	132	43.7	1.2	514	39.3	2.8	42
6	317	46.7	1.6	331	44.3	2.7	43
7	405	49.8	1.5	118	48.0	2.1	45

^{*}Insufficient amount of data points as per RAM-I protocol

The following figures present the scatter plots showing each valid 1-minute interval measured sound level at M1153, M2705, M1602, M0616 and M0085 when all the nearby turbines were ON (Turbine ON + Background) and when all the nearby turbines were OFF (Turbine OFF). The Turbine ON sound level presented was filtered such that only data when the closest turbine was generating 85% power or greater and the receptor was in a downwind condition from the closest turbine was included. It should be noted that the turbine ON sound level includes all sounds measured during the interval.

Figure 1: M1153 - Measured Sound Levels for Turbine ON and Background vs Wind Speed

aercoustics

Figure 2: M2705 - Measured Sound Levels for Turbine ON and Background vs Wind Speed

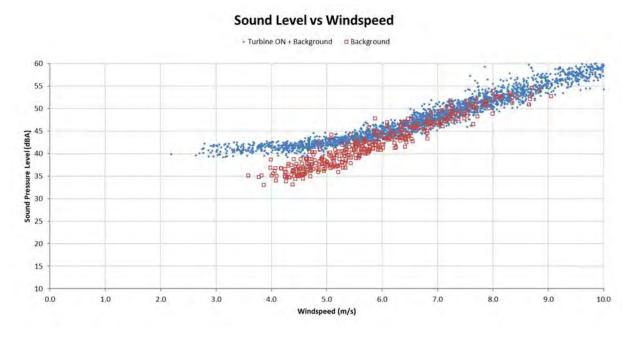


Figure 3: M1602 - Measured Sound Levels for Turbine ON and Background vs Wind Speed

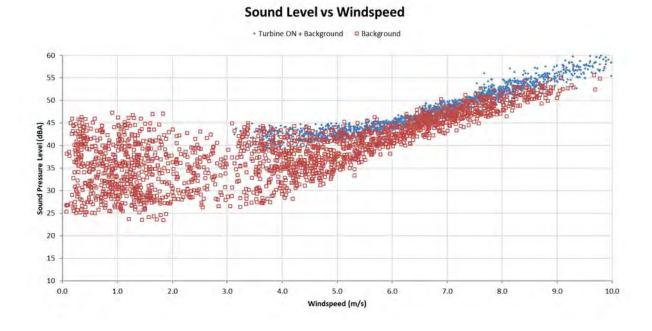


Figure 4: M0616 - Measured Sound Levels for Turbine ON and Background vs Wind Speed

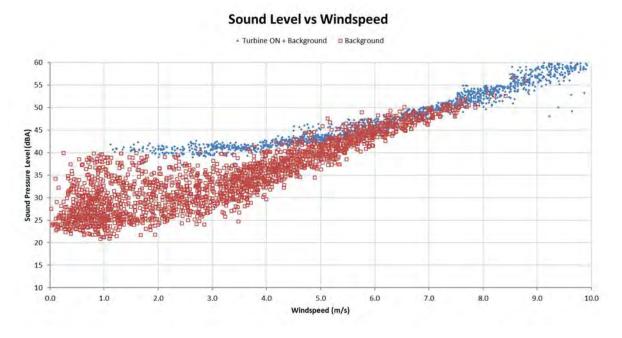
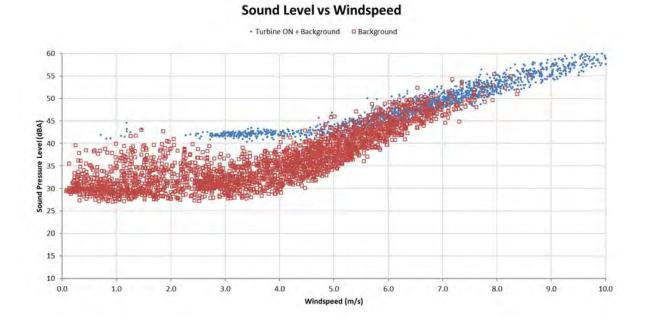



Figure 5: M0085 - Measured Sound Levels for Turbine ON and Background vs Wind Speed

aercoustics

6 Discussion

6.1 Overall Sound Level

The turbine-only component of the sound level was derived from a logarithmic subtraction of the ambient noise from that of the sound level measured with the turbines operating. The resulting sound level can be attributed to the turbines.

The audit at M2705, M1602, M0616 and M0085 are considered representative of the sound levels at Receptor V2705, O1602, O0616 and O0085 given the placement of the acoustic monitoring stations. Monitor M1153 was erected in a location that was significantly closer to the wind project than their representative receptor due to site specific setup limitations. The effect of the closer measurement location is a shorter source-to-receiver distance to the closest turbines and therefore a higher sound level from the turbines at the monitor location compared to the receptor location. To account for this difference in sound level, a correction has been applied based on the difference between the predicted level at the monitor location and the predicted level at the receptor location in the acoustic model. As a result, 1.7 dB was subtracted from the Turbine ONLY sound level for monitor O1153 and is presented in Table 10. See Appendix I for detailed calculation information.

Table 10 presents the Turbine ON, Turbine OFF and calculated Turbine ONLY sound pressure levels between 4-7 m/s. Wind bins which satisfy the RAM-I sample size requirements are highlighted in grey.

Table 10: Assessment Table

Measurement Location	Wind speed at 10m height [m/s]	0	1	2	3	4	5	6	7
	Turbine ON LAeq [dBA]	-	42	43	43	43	44	46	49
O1153	Turbine OFF LAeq [dBA]	29	28	29	33	37	39	44	47
	Turbine ONLY LAeq [dBA]	*	*	*	40 [†]	40 [†]	40 [†]	40 [†]	42 [†]
	Turbine ON LAeq [dBA]	-	-	40	41	41	42	45	49
V2705	Turbine OFF LAeq [dBA]	-	-	-	-	36	39	43	48
	Turbine ONLY LAeq [dBA]	*	*	*	*	40	40	40	41 [‡]
	Turbine ON LAeq [dBA]	-	-	-	43	42	43	45	48
O1602	Turbine OFF LAeq [dBA]	40	38	37	38	38	39	43	47
	Turbine ONLY LAeq [dBA]	*	*	*	*	40	40	40	43
	Turbine ON LAeq [dBA]	-	43	42	42	42	44	47	50
O0085	Turbine OFF LAeq [dBA]	32	33	34	33	35	39	44	48
	Turbine ONLY LAeq [dBA]	*	*	*	42	41	42	43	45
	Turbine ON LAeq [dBA]	-	41	41	41	42	44	46	49
O0616	Turbine OFF LAeq [dBA]	29	31	32	33	36	41	45	48
	Turbine ONLY LAeq [dBA]	*	*	40	40	40	40	40	43
<u> </u>	MECP Limit		40	40	40	40	40	40	43

[†] Turbine ONLY levels are given a distance correction (-1.7dB)

The data from Table 10 is plotted in Figures 6 to 10.

[‡] Higher uncertainty on calculated Turbine ONLY levels in cases where the measured ambient sound level (Turbine OFF) is within 1 dB of the measured Turbine ON level

^{*}Insufficient amount of data points to calculate Turbine ONLY level as per RAM-I protocol

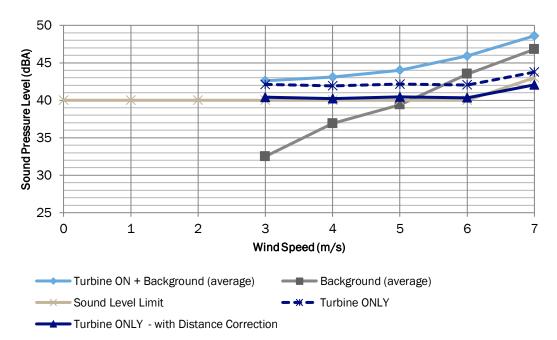
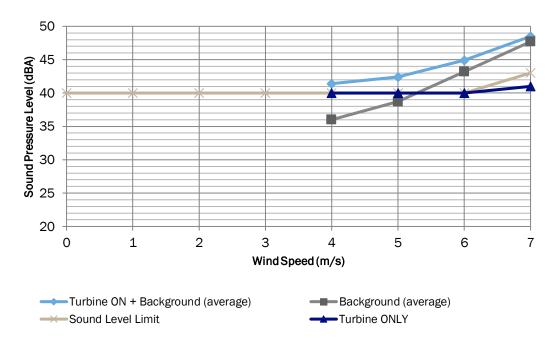



Figure 6: M1153 Turbine Levels compared to MECP Limits

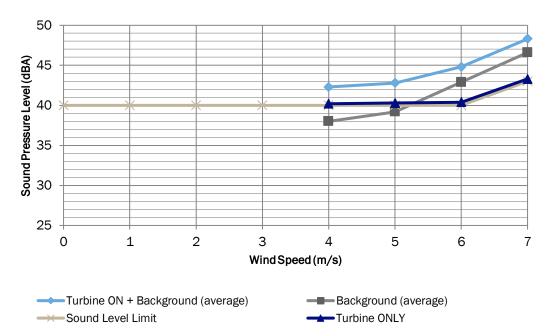
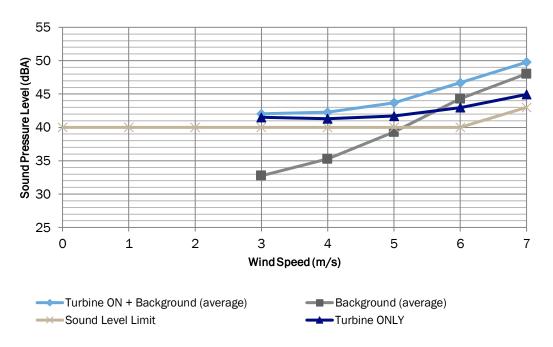



Figure 8: M1602 Turbine Levels compared to MECP Limits

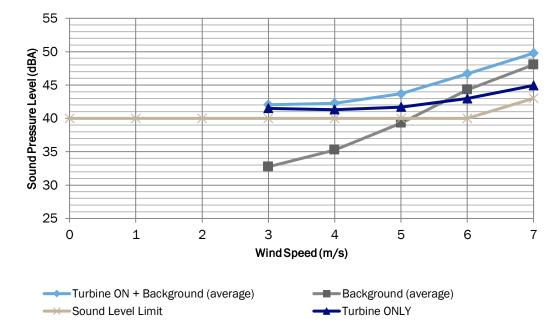


Figure 10: M0085 Turbine Levels compared to MECP Limits

6.2 **Tonality**

The tonality analysis results of the Emission audit measurements for turbines T35 (rated at 104.8 dBA) and T46 (rated at 102.9 dBA) were used as a basis for tones at all receptors, respectively, which were likely to have been generated by the closest turbine rather than by an external source. No tones were reportable according to the IEC 61400-11 Edition 3.0 noise emission measurements carried out on turbines T46 [4] and T35 [5].

Based on discussions with 1021702 B.C. Ltd it was determined that to be consistent with the Phase 1 audit, and Sections 3.8.3 and Section 5.1 of the Compliance protocol, the tonal assessment should been completed using IEC 61400-11 Ed. 3.0 with modifications to adapt the method to immission measurements and the tonal penalty structure taken from ISO 1996-2:2007 Annex C. Namely, Section 5.1 of the compliance protocol states:

If a tonal assessment ... indicates a tonal audibility value that exceeds 4 dB, the Ministry will require that a tonal penalty be applied at all Receptors in accordance with the penalties described in Annex C of ISO 1996-2, Reference [2]

For the tonal assessment, narrowband data was acquired and calculated for each 1-minute interval used in the immission analysis and binned by wind speed. Each minute was analysed in order to detect any tones with tonal audibility greater than -3 dB at any of the measured frequencies. Similar to the methodology in IEC 61400-11, a tone would

have to be present in at least 20% of the sample to be deemed as relevant. This reduces the possibility of intermittent tones related to either the unsteady operation of the turbines, or from other contaminating sources, being attributed to the steady state operation of the turbines. The tonal audibility for the most prominent tones in each wind bin were then evaluated to determine if a tonal penalty would be applicable. The penalty structure was taken from ISO1996-2 Annex C: namely that the tonal penalty would be a positive number between 0dB and 6 dB based on the degree of tonal audibility of the worst-case tone. A tonal penalty is calculated as L_{ta} - 4 dB. i.e. a tonal audibility of 6.5 would incur a penalty of 2.5 dBA on the overall Turbine Only level.

A 116 Hz tone was observed at all receptors but was not prevalent enough nor prominent enough for a tonal penalty to be applicable. Tonal assessment summary tables are provided in Appendix D.

No tonal penalty was found to be applicable based on detailed tonal audibility analysis at audited receptors at the NRWF.

7 Assessment of Compliance

Based on the calculated turbine-only component indicated in Table 10 and Figures 6 to 9, the Niagara Region Wind Farm Project was found to be compliant with MECP limits at receptors O1153, V2705, O0616 and M1602 during the audit.

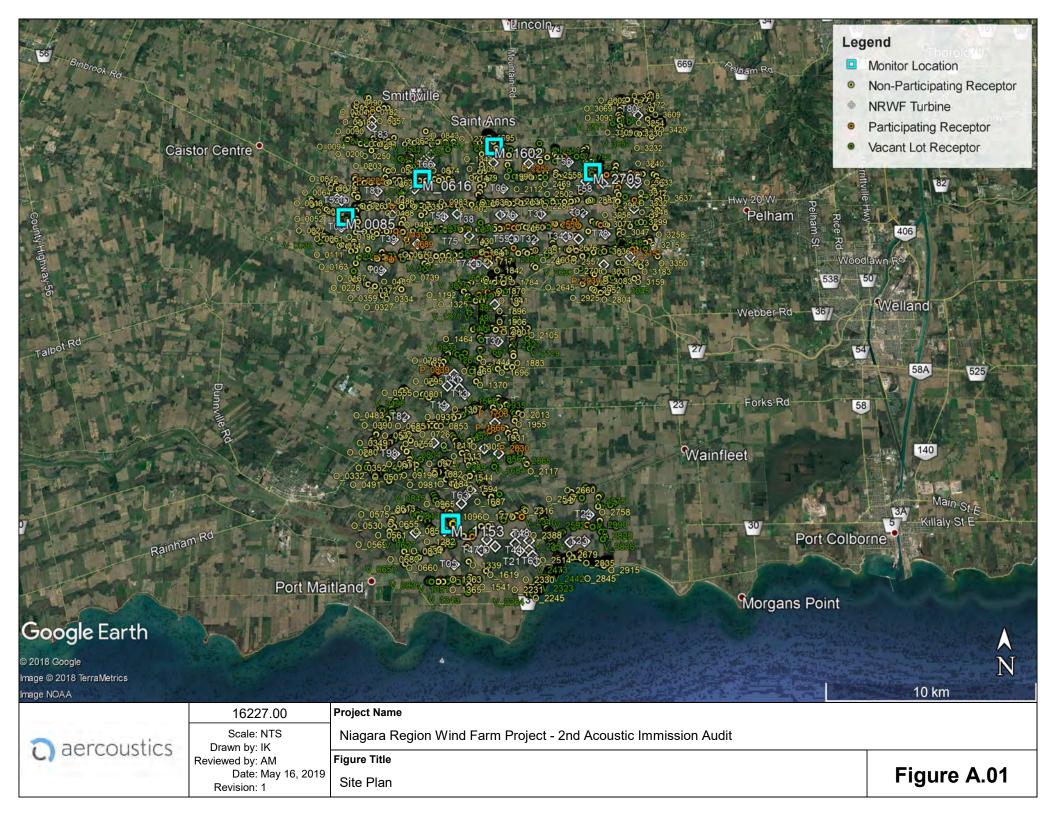
Based on the calculated turbine-only component indicated in Table 10 and Figure 10 the Niagara Region Wind Farm was found to be non-compliant with the MECP limits at receptor 00085. It should be noted that the measured sound levels of the Phase 1 audit at audit location 00085 were compliant with the MECP limits. It is Aercoustics understanding that Boralex in partnership with the turbine manufacturer Enercon has undertaken turbine inspections for physical components as well as turbine operating parameters. Further E-Audit testing is underway to investigate the source of the non-compliance with the MECP sound level limits at that location.

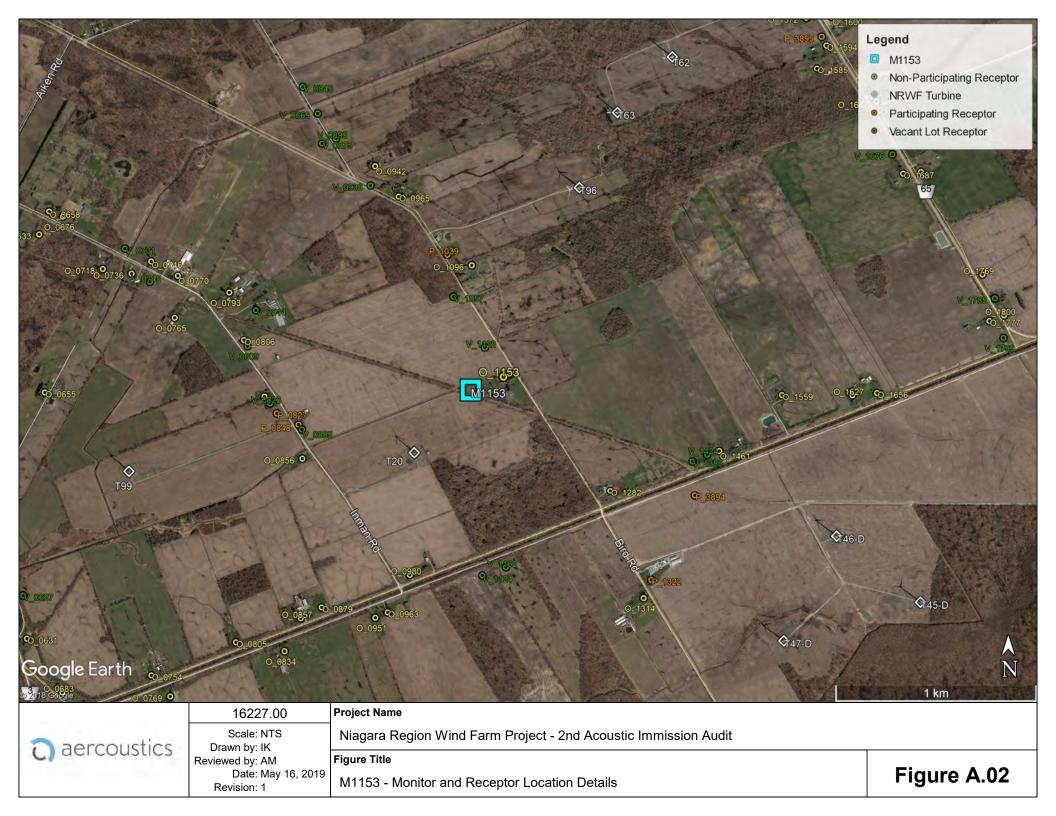
8 Conclusion

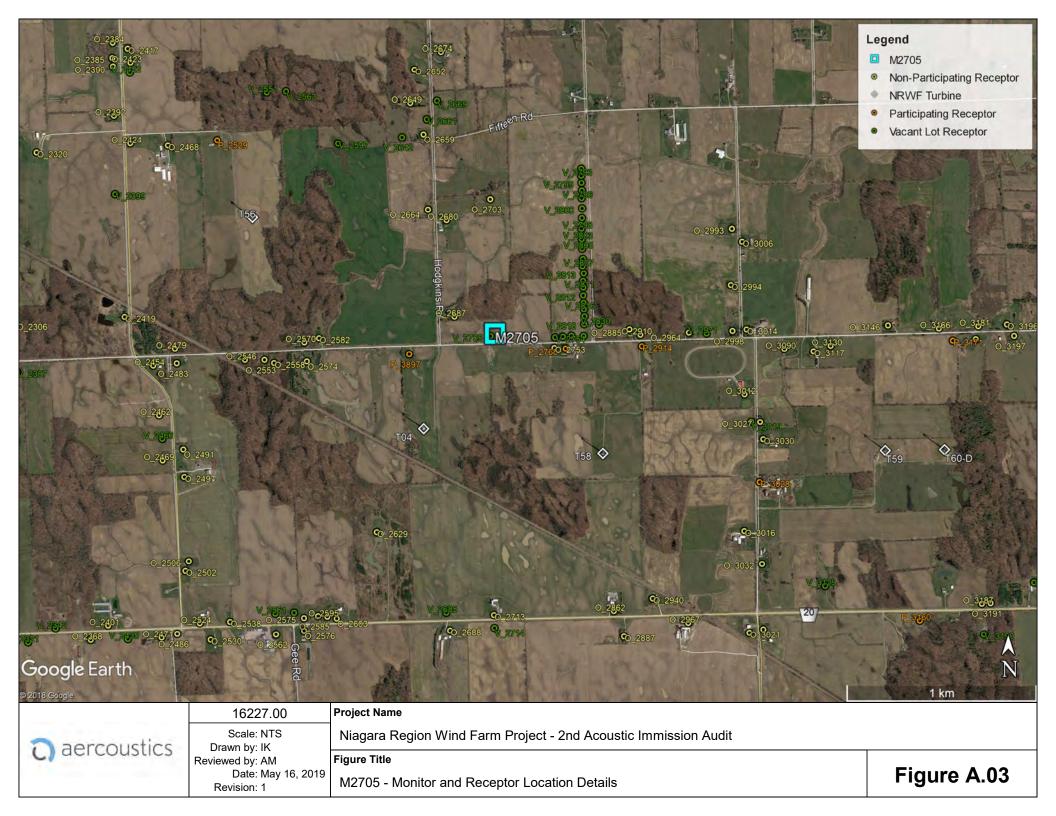
Aercoustics Engineering Limited has completed the Phase 2 acoustic immission audit outlined in the Renewable Energy Approval for the Niagara Region Wind Farm Project. The audit was completed as per the methodology outlined in Parts D and E of the "MECP Compliance Protocol for Wind Turbine Noise."

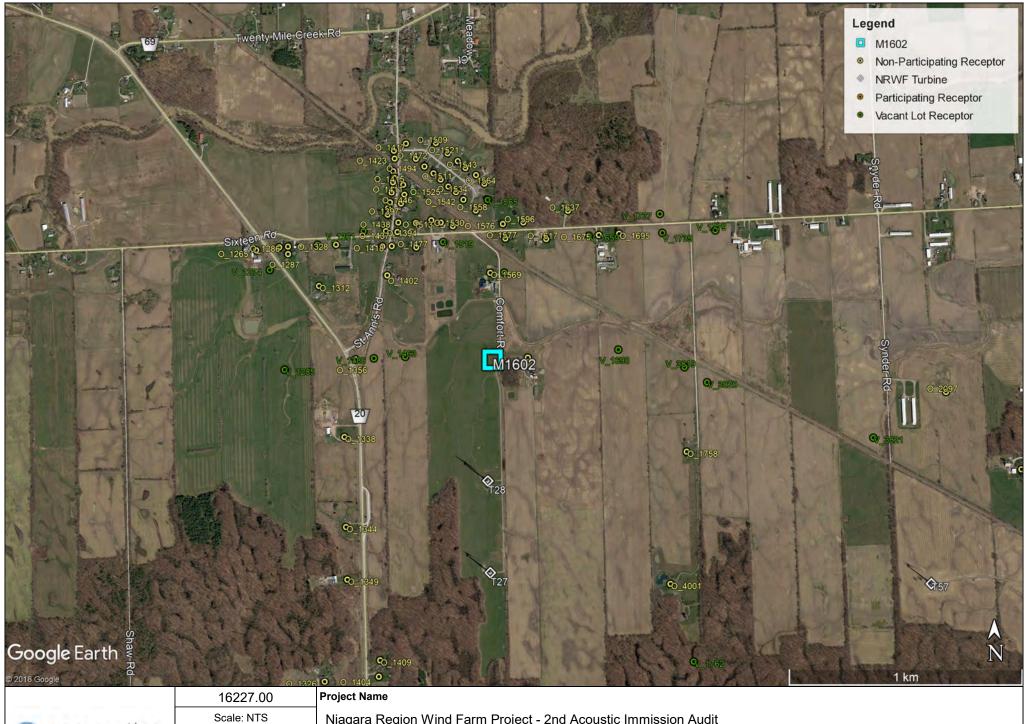
The measured levels were compared to the MECP limits, and the facility was determined to be in compliance at receptors O1153, V2705, O1602 and O0616 during the audit.

The measured levels were compared to the MECP limits, and the facility was determined to be non-compliant at receptor M0085 during the audit.


9 References


- [1] V. Schroter, "Renewable Energy Approval #4353-9HMP2R", Ontario Ministry of the Environment, Toronto, ON, November 6, 2014 and further modified on November 23, 2015, May 6, 2016 and May 12, 2016.
- [2] Ministry of the Environment and Climate Change, "Compliance Protocol for Wind Turbine Noise", Ontario Ministry of the Environment, Toronto, ON, April 21, 2017.
- [3] K. Ganesh and K. Mallinen, "Niagara Region Wind Farm Noise Assessment Report REA Amendment", Stantec Consulting Ltd., Markham, ON, April 08, 2016.
- [4] P. Ashtiani and A. Munro, "Niagara Region Wind Farm Turbine T46 IEC 61400-11 Edition 3.0 Measurement Report", Aercoustics Engineering Ltd., Mississauga, ON, 03 November 2017.
- [5] P. Ashtiani and A. Munro, "Niagara Region Wind Farm Turbine T35 IEC 61400-11 Edition 3.0 Measurement Report", Aercoustics Engineering Ltd., Mississauga, ON, 03 November 2017.



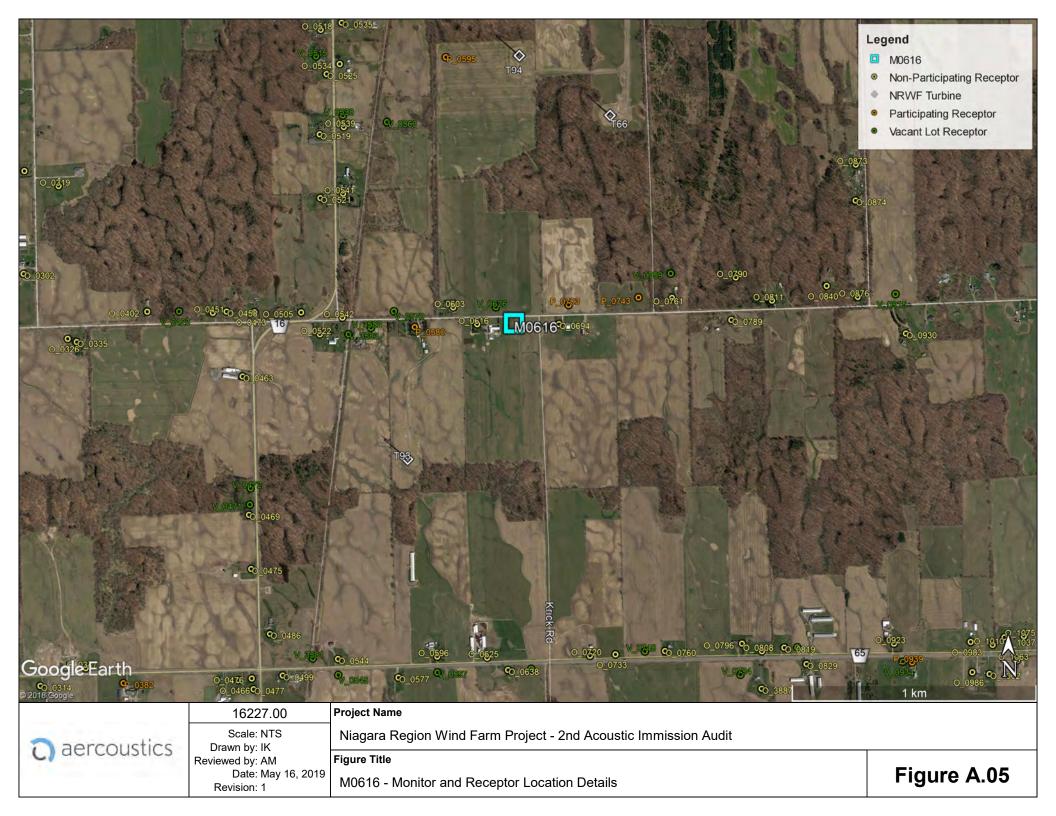


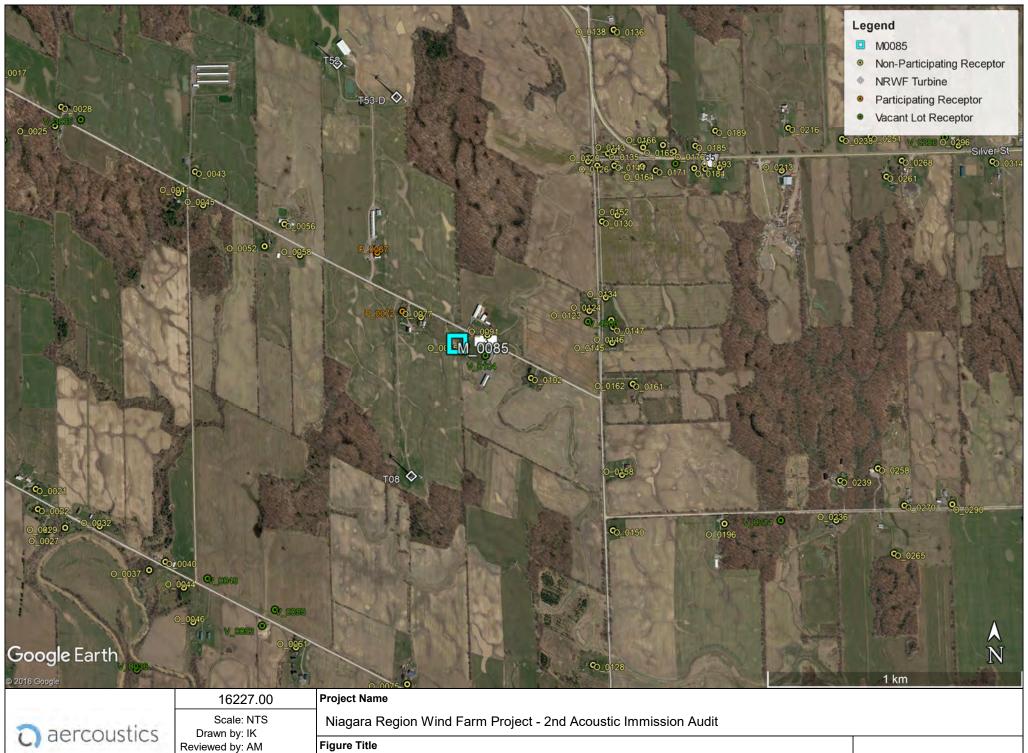
Appendix A Location Details

aercoustics

Scale: NTS
Drawn by: IK

Niagara Region Wind Farm Project - 2nd Acoustic Immission Audit


Figure Title


Reviewed by: AM

Revision: 1

Date: May 16, 2019

M1602 - Monitor and Receptor Location Details

aercoustics

Figure Title

Date: May 16, 2019

Revision: 1

M0085 - Monitor and Receptor Location Details

Scale: NTS

Drawn by: IK
Reviewed by: AM
Date: May 16, 2019
Revision: 1

Project Name

Niagara Region Wind Farm Project - 2nd Acoustic Immission Audit

Figure Title

Site Photos - M1153

Scale: NTS

Drawn by: IK
Reviewed by: AM
Date: May 16, 2019
Revision: 1

Niagara Region Wind Farm Project - 2nd Acoustic Immission Audit

Figure Title

Site Photos - M2705

Scale: NTS

Drawn by: IK
Reviewed by: AM
Date: May 16, 2019
Revision: 1

Niagara Region Wind Farm Project - 2nd Acoustic Immission Audit

Figure Title

Site Photos - M1602

Scale: NTS

Drawn by: IK
Reviewed by: AM
Date: May 16, 2019
Revision: 1

Project Name

Niagara Region Wind Farm Project - 2nd Acoustic Immission Audit

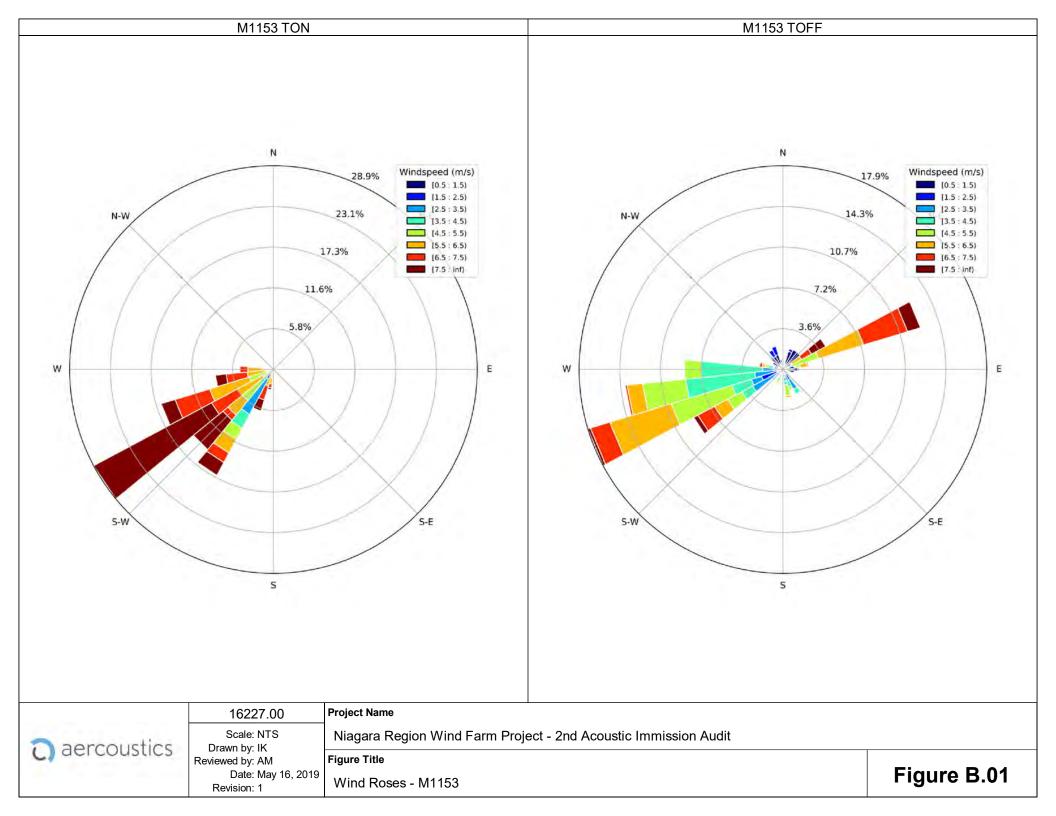
Figure Title

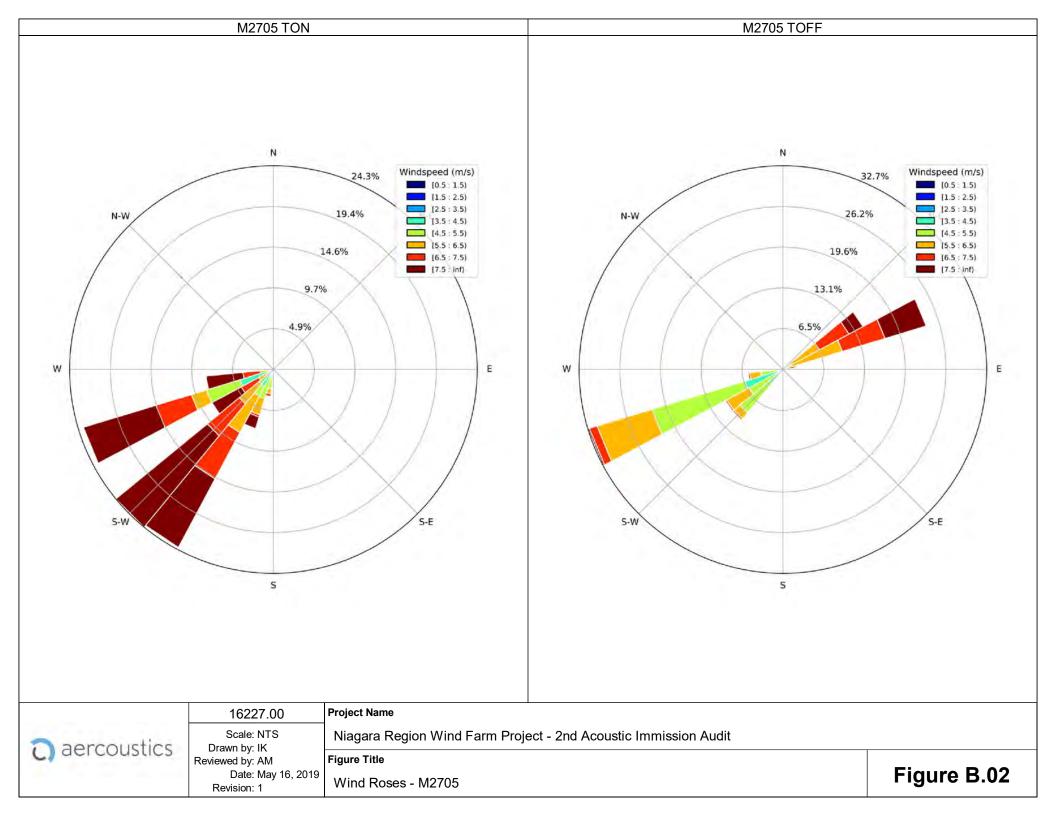
Site Photos - M0616

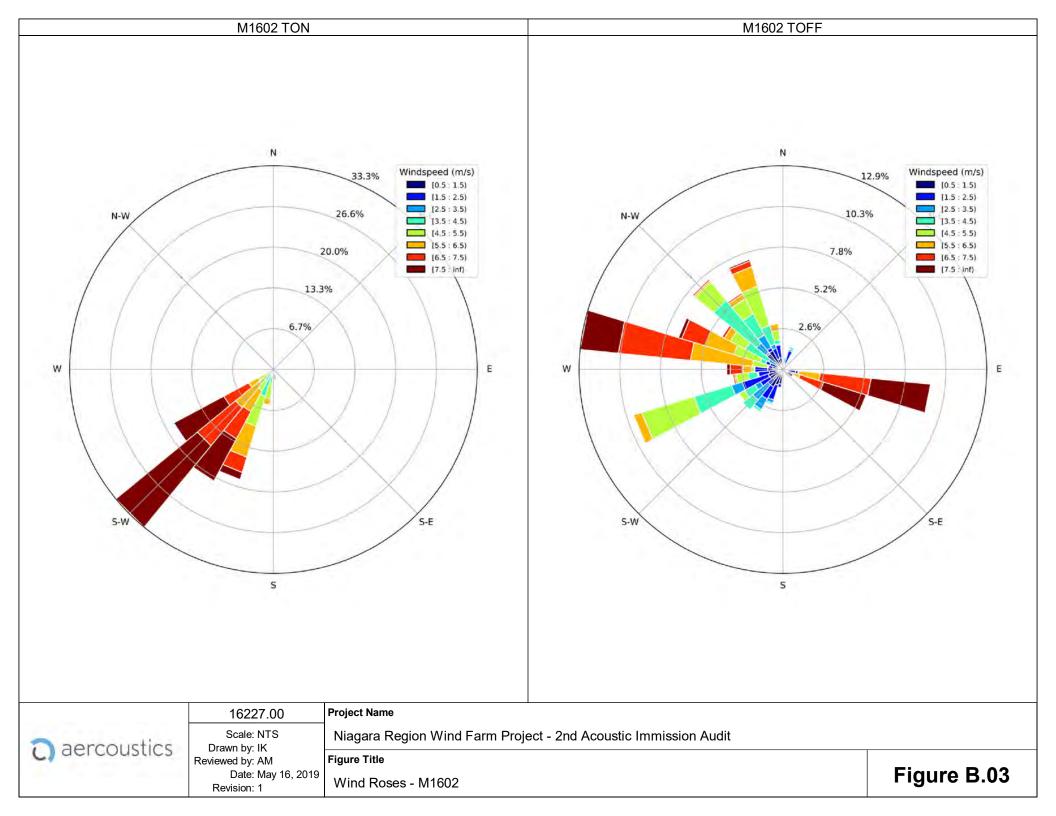
aercoustics

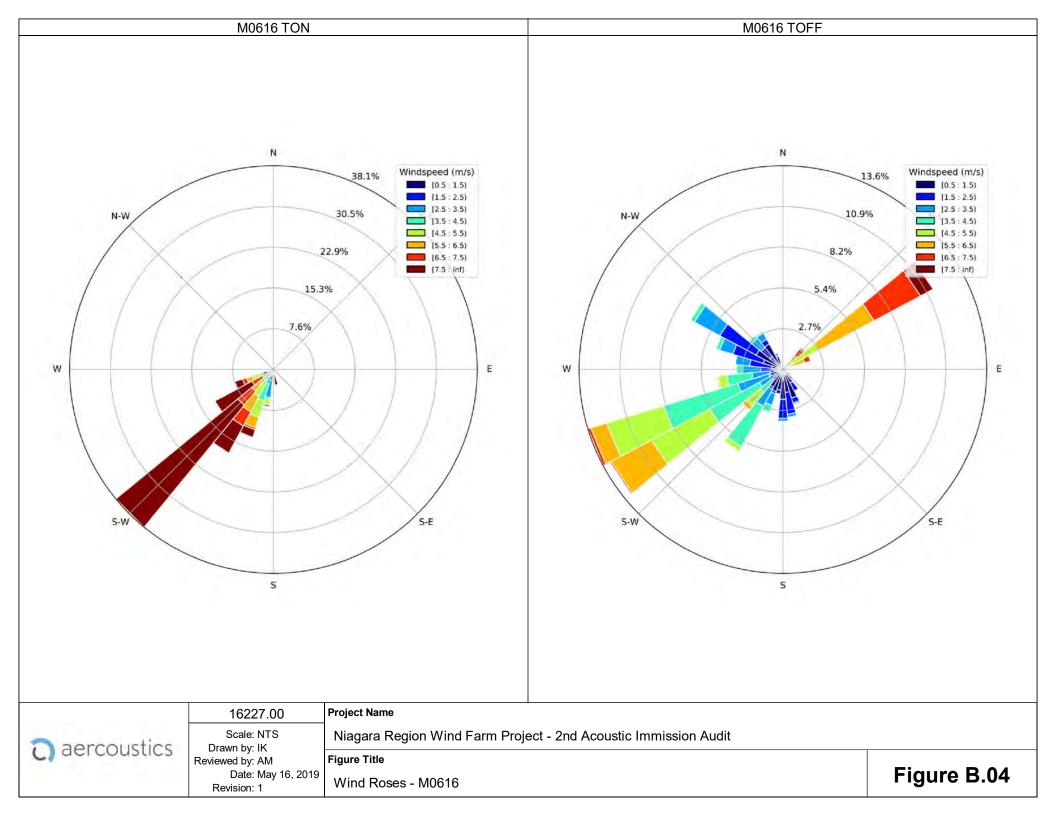
16227.00

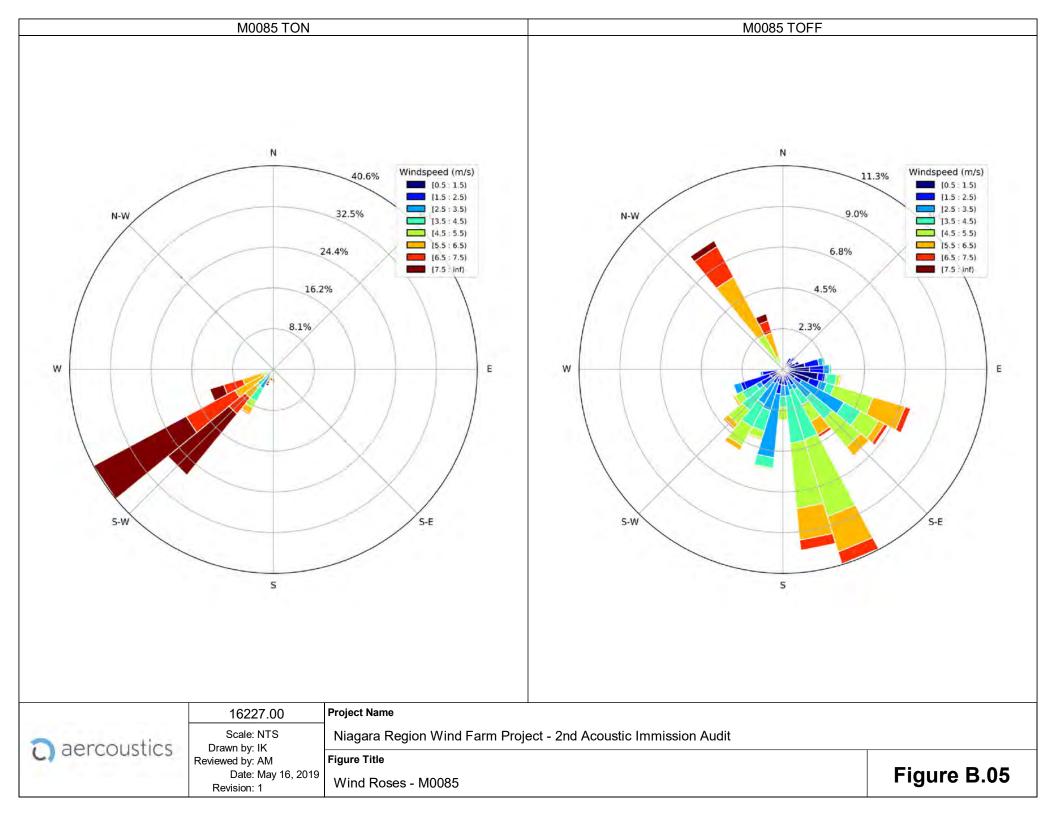
Scale: NTS Drawn by: IK
Reviewed by: AM
Date: May 16, 2019
Revision: 1


Niagara Region Wind Farm Project - 2nd Acoustic Immission Audit


Figure Title


Site Photos - M0085




Appendix B Wind Roses

Appendix C Turbine Operational Statement from Operator

Appendix D Tonality Assessment

Project: Niagara Region Wind Farm Project - 1st Acoustic Immission Audit

Report ID: 16227

MOECC Sound Level Limit (dB) Data Count Tone Count Audability (dB) Penalty (dB) ** ** 0 0 0 40 1 3 3 100% 40 8.0 0 40 2 40 39 98% 2.2 0 180 92% 40 3 165 40 2.4 0 160 141 88% 40 40 8.0 0 4 227 64% 40 40 5 356 -0.4 0 649 226 35% 40 40 0 6 -1.1 520 73 14% 42 43 -1.9 0

Page 1 of 1

Created on: 5/22/2019

^{*} Insufficient amount of data points as per RAM-I protocol

^{**} No data points at wind speed

[†] Turbine ONLY levels are given a distance correction (-1.7 dB)

Project: Niagara Region Wind Farm Project - 1st Acoustic Immission Audit

Report ID: 16227

Data Count Audability (dB) Penalty (dB) ** ** ** ** 100% 2.5 69% 3.6 66% 2.9 48% 1.4 17% 0.6 6% 2.4

Page 1 of 1

Created on: 5/22/2019

^{*} Insufficient amount of data points as per RAM-I protocol

^{**} No data points at wind speed

Project: Niagara Region Wind Farm Project - 1st Acoustic Immission Audit

Page 1 of 1 Report ID: 16227 Created on: 5/22/2019

	M1602 91-141 Hz Tonality Summary									
Wind Speed (m/s)	Data Count	Tone Count	Tonal Presence (%)	Turbine ONLY (dB)	MOECC Sound Level Limit (dB)	Average Tonal Audability (dB)	Applicable Tonal Penalty (dB)			
0	0	0	**	**	40	**	0			
1	0	0	**	**	40	**	0			
2	0	0	**	**	40	**	0			
3	11	11	100%	*	40	3.4	0			
4	159	159	100%	40	40	3.3	0			
5	286	281	98%	40	40	3.1	0			
6	320	308	96%	40	40	1.5	0			
7	399	312	78%	43	43	-0.1	0			

^{*} Insufficient amount of data points as per RAM-I protocol

^{**} No data points at wind speed

Project: Niagara Region Wind Farm Project - 1st Acoustic Immission Audit

Report ID: 16227

Data Count Audability (dB) Penalty (dB) ** 0.5 100% 100% 1.0 73% -0.1 69% -0.3

-1.0

-1.4

-2.0

45%

17%

5%

aercoustics.com

Page 1 of 1

Created on: 5/22/2019

^{*} Insufficient amount of data points as per RAM-I protocol

^{**} No data points at wind speed

Project: Niagara Region Wind Farm Project - 1st Acoustic Immission Audit

Report ID: 16227

Turbine ONLY MOECC Sound Level Limit (dB) Data Count Audability (dB) Penalty (dB) ** 80% -0.2 -0.7 100% 90% 1.6 95% 0.7 72% -0.2

-0.6

-1.6

50%

31%

aercoustics.com

Page 1 of 1

Created on: 5/22/2019

^{*} Insufficient amount of data points as per RAM-I protocol

^{**} No data points at wind speed

Appendix E Turbine Status during TON and TOFF

Niagara Region – Turbine Status Matrix for TON and TOFF

	Monitor Locations				
Turbine ID	M1153	M2705	M1602	M0616	M0085
T01					
T02					
T03					
T04		1			
T05	1				
T06					
T07					
T08					1
T09					
T10					
T11					
T12					
T13					
T14					
T16					
T18					
T19					
T20	1				
T21	· ·				
T22					
T23					
T24					
T27			1		
T28			1		
T29			1		
T31					
T32					
T33					
T34					
T35					
T36					
T37					
T38					
T39					
T41					
T42					
T43					
T44					
T45					
T46					
T47					
T48					
T49					
T51					
T52					1
T53					1
T54					

Tumbin a ID	Monitor Locations						
Turbine ID	M1153	M2705	M1602	M0616	M0085		
T55							
T56		1					
T57							
T58		1					
T59							
T60							
T61							
T62	1						
T63	1						
T65							
T66				1			
T72							
T74							
T75							
T76							
T78							
T79							
T80							
T81							
T82							
T83							
T84							
T85				1			
T88							
T89							
T91							
T93				1			
T94				1			
T95							
T96	1						
T97							
T98							
T99	1						

1 - Turbine ON/OFF

Turbines turned off such that predicted impact at monitor/receptor location is 30 dBA or less

Appendix F Receptor Selection Rationale

		Madallad	Dononton	Distance to		
Receptor ID	Description	Modelled Sound Level	Receptor Height	Distance to Closest Turbine	Closest Turbine ID	Rationale
Receptor ID	Description	(dBA)	(m)	(m)	Closest Turblife ID	Rationale
0 1097	Non-Participating Receptor	40.0	4.5	612	T75	Not in Prevailing Wind Direction
0_1344	Non-Participating Receptor	40.0	4.5	640	T28	Not in Prevailing Wind Direction
O_856	Non-Participating Receptor	40.0	4.5	556	T20	Not in Prevailing Wind Direction
V_2635	Non-Participating Vacant Lot	40.0	4.5	597	T24	Not in Prevailing Wind Direction
V_2719	Non-Participating Vacant Lot	40.0	4.5	552	T24	Not in Prevailing Wind Direction
V_563	Non-Participating Vacant Lot	40.0	4.5	601	T94	Not in Prevailing Wind Direction
O_368	Non-Participating Receptor	39.9	4.5	570	T39	Not in Prevailing Wind Direction
0_416	Non-Participating Receptor	39.9	4.5	610	T39	Not in Prevailing Wind Direction
0_1153	Non-Participating Receptor	39.9	4.5	584	T20	Selected Monitoring Location
0_1184	Non-Participating Receptor	39.9	4.5	718	T63	Not in Prevailing Wind Direction
0_1707	Non-Participating Receptor	39.9 39.9	4.5 4.5	734 971	T01 T43	Not in Prevailing Wind Direction
V_2361 V_430	Non-Participating Vacant Lot Non-Participating Vacant Lot	39.9	4.5	616	T39	Poor monitoring location; large tree lot to the South to block winds and corn stalks in field to cause high ambient noise
0_1349	Non-Participating Receptor	39.8	4.5	614	T27	Not in Prevailing Wind Direction
0_1734	Non-Participating Receptor	39.8	4.5	705	T06	Not in Prevailing Wind Direction Not in Prevailing Wind Direction
0_2160	Non-Participating Receptor	39.8	4.5	649	T32	Not in Prevailing Wind Direction
O_2550	Non-Participating Receptor	39.8	4.5	693	T34	Not in Prevailing Wind Direction
O_2593	Non-Participating Receptor	39.8	4.5	608	T49	Not in Prevailing Wind Direction
V_2180	Non-Participating Vacant Lot	39.8	4.5	653	T31	Not in Prevailing Wind Direction
V_3582	Non-Participating Vacant Lot	39.8	4.5	553	T93	Not in Prevailing Wind Direction
V_855	Non-Participating Vacant Lot	39.8	4.5	569	T20	Not in Prevailing Wind Direction
0_543	Non-Participating Receptor	39.7	4.5	663	T07	Not in Prevailing Wind Direction
0_1668	Non-Participating Receptor	39.7	4.5	651	T65	Not in Prevailing Wind Direction
0_1002	Non-Participating Receptor	39.7	4.5	555	T38	Not in Prevailing Wind Direction
0_1096	Non-Participating Receptor	39.7	4.5	657	T96	Not in Prevailing Wind Direction
0_1750	Non-Participating Receptor	39.7	4.5	697	T06	Not in Prevailing Wind Direction
O_1770 O_2420	Non-Participating Receptor Non-Participating Receptor	39.7 39.7	4.5 4.5	776 900	T76 T49	Not in Prevailing Wind Direction
0_2420	Non-Participating Receptor	39.7	4.5	900 856	T49	Not in Prevailing Wind Direction
0_2434	Non-Participating Receptor	39.7	4.5	833	T49	Not in Prevailing Wind Direction Not in Prevailing Wind Direction
0_2441	Non-Participating Receptor	39.7	4.5	799	T49	Not in Prevailing Wind Direction
0_2601	Non-Participating Receptor	39.7	4.5	626	T49	Not in Prevailing Wind Direction Not in Prevailing Wind Direction
0_2605	Non-Participating Receptor	39.7	4.5	635	T49	Not in Prevailing Wind Direction
O_2608	Non-Participating Receptor	39.7	4.5	645	T49	Not in Prevailing Wind Direction
0_2611	Non-Participating Receptor	39.7	4.5	650	T49	Not in Prevailing Wind Direction
0_2616	Non-Participating Receptor	39.7	4.5	662	T49	Not in Prevailing Wind Direction
0_2619	Non-Participating Receptor	39.7	4.5	676	T49	Not in Prevailing Wind Direction
0_2690	Non-Participating Receptor	39.7	4.5	728	T35	Permission not Granted
0_2753	Non-Participating Receptor	39.7	4.5	609	T58	Not in Prevailing Wind Direction
0_616	Non-Participating Receptor	39.7	4.5	617	T93	Selected Monitoring Location
0_986	Non-Participating Receptor	39.7 39.7	4.5	559	T38 T20	Not in Prevailing Wind Direction
V_1122 V_1995	Non-Participating Vacant Lot Non-Participating Vacant Lot	39.7	4.5 4.5	628 705	T76	Permission not Granted
V_1995 V_2411	Non-Participating Vacant Lot	39.7	4.5	934	T49	Not in Prevailing Wind Direction Not in Prevailing Wind Direction
V_2411 V_2437	Non-Participating Vacant Lot	39.7	4.5	847	T49	Not in Prevailing Wind Direction
V_2451	Non-Participating Vacant Lot	39.7	4.5	794	T49	Not in Prevailing Wind Direction
V 2705	Non-Participating Vacant Lot	39.7	4.5	603	T04	Selected Monitoring Location
0_1074	Non-Participating Receptor	39.6	4.5	632	T19	Not in Prevailing Wind Direction
0_1112	Non-Participating Receptor	39.6	4.5	673	T19	Not in Prevailing Wind Direction
0_937	Non-Participating Receptor	39.6	4.5	583	T19	Not in Prevailing Wind Direction
0_2589	Non-Participating Receptor	39.6	4.5	613	T49	Not in Prevailing Wind Direction
0_1409	Non-Participating Receptor	39.6	4.5	597	T27	Not in Prevailing Wind Direction
0_1546	Non-Participating Receptor	39.6	4.5	741	T65	Not in Prevailing Wind Direction
O_1662 O_2280	Non-Participating Receptor	39.6	4.5 4.5	704 659	T06	Not in Prevailing Wind Direction
O_2280 O_2440	Non-Participating Receptor Non-Participating Receptor	39.6 39.6	4.5	827	T31 T49	Not in Prevailing Wind Direction
0_2440	Non-Participating Receptor	39.6	4.5	611	T49	Not in Prevailing Wind Direction Not in Prevailing Wind Direction
0_2598	Non-Participating Receptor	39.6	4.5	573	T35	Not in Prevailing Wind Direction Not in Prevailing Wind Direction
0_2627	Non-Participating Receptor	39.6	4.5	666	T23	Not in Prevailing Wind Direction Not in Prevailing Wind Direction
0_2629	Non-Participating Receptor	39.6	4.5	590	T04	Not in Prevailing Wind Direction
0_2633	Non-Participating Receptor	39.6	4.5	652	T23	Not in Prevailing Wind Direction
0_2710	Non-Participating Receptor	39.6	4.5	657	T02	Not in Prevailing Wind Direction
O_3030	Non-Participating Receptor	39.6	4.5	646	T59	Not in Prevailing Wind Direction
V_2404	Non-Participating Vacant Lot	39.6	4.5	965	T49	Not in Prevailing Wind Direction
V_3583	Non-Participating Vacant Lot	39.6	4.5	561	T93	Not in Prevailing Wind Direction
0_603	Non-Participating Receptor	39.5	4.5	643	T93	Receptor location 115m away from selected monitoring location M616
0_118	Non-Participating Receptor	39.5	4.5	636	T88	Not in Prevailing Wind Direction
0_1602	Non-Participating Receptor	39.5	4.5	558	T28	Selected Monitoring Location
0_1636	Non-Participating Receptor	39.5	4.5	724	T01	Not in Prevailing Wind Direction
0_1677	Non-Participating Receptor	39.5	4.5	700	T01	Not in Prevailing Wind Direction
0_2026	Non-Participating Receptor	39.5	4.5	759	T76	Not in Prevailing Wind Direction
O_2571 O_2658	Non-Participating Receptor Non-Participating Receptor	39.5 39.5	4.5	618 603	T49 T23	Not in Prevailing Wind Direction
0_2658	Non-Participating Receptor	39.5	4.5	554	T08	Not in Prevailing Wind Direction Selected Monitoring Location
	ap.ag 1.000pt01	-7.0		-01	. 30	Solected Monitoring Education

Appendix G Calibration Certificates

Tel 802.316.4368 · Fax 802.735.9106 · www.sohwind.com

CERTIFICATE FOR CALIBRATION OF SONIC ANEMOMETER

Certificate number: 17.US1.11150 Date of issue: December 18, 2017

Type: Vaisala Weather Transmitter, WXT520 Serial number: M0410642

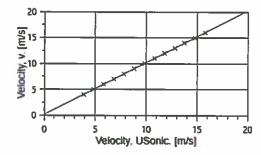
Manufacturer: Vaisala, Oyj, Pl 26, FIN-00421 Helsinki, Finland

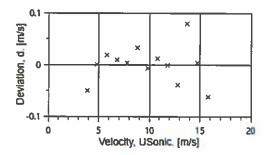
Client: Aercoustics Engineering Ltd., 1004 Middlegate RD, Suite 1100, S.Tower, Mississauga, ON L4Y 1M4, Canada

Anemometer received: December 14, 2017 Anemometer calibrated: December 15, 2017

Calibrated by: MEJ Procedure: MEASNET, IEC 61400-12-1:2017 Annex F

Certificate prepared by: EJF Approved by: Calibration engineer, EJF


Calibration equation obtained: $v[m/s] = 1.00624 \cdot f[m/s] + 0.12903$


Standard uncertainty, slope: 0.00283Standard uncertainty, offset: 0.23103Covariance: -0.0000793 (m/s) 2 /m/sCoefficient of correlation: $\rho = 0.999956$

Absolute maximum deviation: 0.079 m/s at 14.014 m/s

Barometric pressure: 1004.1 hPa Relative humidity: 10.6%

•									
Succession	Velocity	Velocity Temperate		ature in Wind		Deviation,	Uncertainty		
	pressure, q.	wind tunnel	d.p. box	velocity, v.	Output, f.	d.	$u_{c} (k=2)$		
	[Pa]	[°C]	[°C]	[m/s]	[m/s]	[m/s]	[m/s]		
2	9.40	21.7	25.1	3.983	3.8800	-0.050	0.024		
4	14.80	21.7	25.1	4.998	4.8379	0.000	0.025		
6	21.34	21.7	25.1	6.001	5.8167	0.019	0.027		
8	28.99	21.8	25.1	6.994	6.8133	0.009	0.029		
10	37.84	21.8	25.1	7.991	7.8100	0.004	0.032		
12	48.28	21.8	25.2	9.027	8.8100	0.033	0.035		
13-last	59.46	21.8	25.2	10.018	9.8345	-0.007	0.038		
11	71.84	21.8	25.1	11.012	10.8033	0.012	0.041		
9	85.15	21.7	25.1	11.988	11.7867	-0.001	0.044		
7	99.86	21.7	25.1	12.983	12.8133	-0.039	0.047		
5	116.34	21.7	25.1	14.014	13.7200	0.079	0.050		
3	132.72	21.7	25.1	14.968	14.7433	0.004	0.053		
1-first	151.15	21.6	25.1	15.972	15.8067	-0.062	0.056		

EQUIPMENT USED

Serial Number	Description			
Njord1	Wind tunnel, blockage factor = 1.0035			
2254	Control cup anemometer			
•	Mounting tube, D = 19 mm			
TT003	Summit Electronics, 1XPT100, 0-10V Output, wind tunnel temp.			
TP001	PR Electronics 5102, 0-10V Output, differential pressure box temp.			
DP004	Setra Model 239, 0-1inWC, differential pressure transducer			
HY002	Dwyer RHP-2D20, 0-10V Output, humidity transmitter			
BP001	Setra Model 278, barometer			
PL8	Pitot tube			
XB002	Computer Board. 16 bit A/D data acquisition board			
9PRZRW1	PC dedicated to data acquisition			

Traceable calibrations of the equipment are carried out by external accredited institutions: Atlantic Scale, Essco Calibration Labs & Furness Controls. A real-time analysis module within the data acquisition software detects pulse frequency.

Photo of the wind tunnel setup. The cross-sectional area is 2.5m x 2.5m.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the IEC 61400-12-1:2005 procedure. See Document US.12.01.004 for further details.

COMMENTS

This sensor was calibrated in the 90° output postion.

Certificate number: 17.US1.11150

CERTIFICATE FOR CALIBRATION OF SONIC ANEMOMETER

Certificate number: 17.US1.11157 Date of issue: December 18, 2017

Type: Vaisala Weather Transmitter, WXT520 Serial number: M0410642

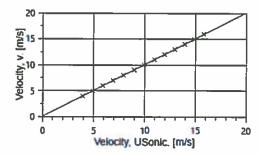
Manufacturer: Vaisala, Oyj, Pl 26, FIN-00421 Helsinki, Finland

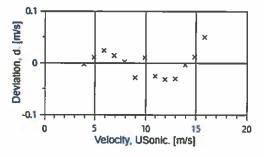
Client: Aercoustics Engineering Ltd., 1004 Middlegate RD, Suite 1100, S.Tower, Mississauga, ON L4Y 1M4, Canada

Anemometer received: December 14, 2017 Anemometer calibrated: December 15, 2017

Calibrated by: MEJ Procedure: MEASNET, IEC 61400-12-1:2017 Annex F

Certificate prepared by: EJF Approved by: Calibration engineer, EJF


Calibration equation obtained: $v \text{ [m/s]} = 1.00125 \cdot f \text{ [m/s]} + 0.05815$


Standard uncertainty, slope: 0.00187 Standard uncertainty, offset: 0.34229 Covariance: $-0.0000350 \text{ (m/s)}^2/\text{m/s}$ Coefficient of correlation: $\rho = 0.999981$

Absolute maximum deviation: 0.050 m/s at 15.968 m/s

Barometric pressure: 1004.0 hPa Relative humidity: 10.7%

-							
Succession	Velocity	Velocity Tempera		Wind	Anemometer	Deviation,	Uncertainty
	pressure, q.	wind tunnel	d.p. box	velocity, v.	Output, f.	d.	u_c (k=2)
	[Pa]	[°C]	[°C]	[m/s]	[m/s]	[m/s]	[m/s]
2	9.35	21.5	25.0	3.970	3.9100	-0.003	0.024
4	14.72	21.5	25.1	4.982	4.9069	0.011	0.025
6	21.29	21.5	25.1	5.993	5,9033	0.024	0.027
8	28.95	21.5	25.1	6,988	6.9067	0.014	0.029
10	37.98	21.5	25.1	8.004	7.9333	0.002	0.032
12	48.14	21.5	25.1	9.011	8.9700	-0.029	0.035
13-last	59.47	21.5	25.1	10.016	9.9345	0.010	0.038
11	71.90	21.5	25.1	11.013	10.9667	-0.026	0.041
9	85.19	21.5	25.1	11.988	11.9467	-0.032	0.044
7	100.19	21.5	25.1	13.001	12.9567	-0.030	0.047
5	116.44	21.5	25.1	14.015	13.9433	-0.004	0.050
3	132.88	21.5	25.0	14.972	14.8833	0.012	0.053
1-first	151.18	21.4	25.0	15.968	15.8400	0.050	0.056

Ein Jefeld

EQUIPMENT USED

Serial Number	Description			
Njord1	Wind tunnel, blockage factor = 1.0035			
2254	Control cup anemometer			
-	Mounting tube, $D = 19 \text{ mm}$			
TT003	Summit Electronics, 1XPT100, 0-10V Output, wind tunnel temp.			
TP001	PR Electronics 5102, 0-10V Output, differential pressure box temp.			
DP004	Setra Model 239, 0-1 in WC, differential pressure transducer			
HY002	Dwyer RHP-2D20, 0-10V Output, humidity transmitter			
BP001	Setra Model 278, barometer			
PL8	Pitot tube			
XB002	Computer Board. 16 bit A/D data acquisition board			
9PRZRW1	PC dedicated to data acquisition			

Traceable calibrations of the equipment are carried out by external accredited institutions: Atlantic Scale, Essco Calibration Labs & Furness Controls. A real-time analysis module within the data acquisition software detects pulse frequency.

Photo of the wind tunnel setup. The cross-sectional area is 2.5m x 2.5m.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the IEC 61400-12-1:2005 procedure. See Document US.12.01.004 for further details.

COMMENTS

This sensor was calibrated in the 0°output postion.

Certificate number: 17.US1.11157

CERTIFICATE of CALIBRATION

Make: PCB Piezotronics Reference #: 151681

Model: 480E09 Customer: Aercoustics Engineering Ltd

Mississauga, ON

Descr.: Conditioning Amplifier

Serial #: 32814 P. Order: 2018.02.20C

Asset #: 01083

Cal. status: Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer.

Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.

Our calibration system complies with the requirements of ISO-17025 standard, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated: Mar 01, 2018

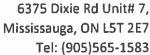
J. Raposo

Cal. Due: Mar 01, 2019

Temperature : 23 °C \pm 2 °C Relative Humidity : 30% to 70%

Standards used: J-215 J-512

Navair Technologies


REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST

6375 Dixie Rd. Mississauga, ON, L5T 2E7

Phone: 905 565 1584 Fax: 905 565 8325

http://www.navair.com e-Mail: service @ navair.com

The copyright of this document is the property of Navair Technologies Any reproduction other than in full requires written approval!

Fax: (905)565-8325

Form: 480E09	Approved by:jr	Date:Feb/18	ver1.0

Calibration Report for Certificate :

151681

Make	Model	Serial	Asset
PCB	480E09	32814	1083
Piezotronics			

Test	Min	Reading	Max	In/Out

Gain accuracy at 1kHz

Gain Set	Input V		v		
xl	1	0.9800	0.9998	1.0200	In
x10	0.1	0.9800	1.0002	1.0200	In
x100	0.01	0.9800	0.9993	1.0200	In

Gain Flatness

X1

I/P Hz			%		
10	1	-5.0	±0.1	5.0	In
10000	1	-5.0	±0.1	5.0	In
50000	1	-5.0	±0.1	5.0	In
100000	1	-5.0	±0.1	5.0	In

X10

I/P Hz			f		
10	0.1	-5.0	±0.1	5.0	In
10000	0.1	-5.0	±0.1	5.0	In
50000	0.1	-5.0	-0.3	5.0	In
100000	0.1	-5.0	-1.2	5.0	In

X100

I/P HZ			*		
10	0.01	-5.0	±0.1	5.0	In
10000	0.01	-5.0	-0.3	5.0	In
50000	0.01	-5.0	-1.2	5.0	In

Compliant Calibration Certificate

SN/D _1C009CD

DATE 22-MAY-2018

DUE 22-MAY-2019

Date Printed: Customer:

Certificate Number:

5618239.1 22-MAY-2018

OE Number:

Page:

Aercoustics Engineering LTD (CA)

1004 Middlegate Road

Suite 1100

MISSISSAUGA, L4Y 0G1

CANADA

Manufacturer: Serial Number: National Instruments

Part Number:

1C009CD

195551C-01L

Model:

NI 9234

Description:

MODULE ASSY, NI 9234, 4 AI

CONFIGURABLE

Calibration Date:

22-MAY-2018

Recommended Calibration Due:

21401260

1 of 14

Procedure Name:

NI 9234

Verification Results:

22-MAY-2019 As Found: Passed

As Left: Passed

Procedure Version:

3.6.1.0

Calibration Executive Version:

4.2.1.0

Lab Technician:

Rodolfo Maldonado

Driver Info: **Humidity:**

NI-DAQmx:17.1.0

45.4% RH

23.0° C Temperature: The data found in this certificate must be interpreted as:

As Found As Left

The calibration data of the unit as received by National Instruments. The calibration data of the unit when returned from National Instruments.

The As Found and As Left readings are identical for units not adjusted or repaired.

This calibration conforms to ANSI/NCSL Z540.1-1994 (R2002) requirements.

The TAR (Test Accuracy Ratio) of this calibration is maintained at a ratio of 4:1 or greater, unless otherwise indicated in the measurements. A TAR determination is not possible for singled sided specification limits and therefore the absence of a value should not be interpreted as a TAR of 4:1 or greater, but rather undetermined. When provided, the expanded measurement uncertainty is calculated according to the Guide to the Expression of Uncertainty in Measurement (GUM) for a confidence level of approximately 95%. The uncertainty is calculated at time of calibration and does not include the object long-term stability and different environmental and operational conditions.

Results are reviewed to establish where any measurement results exceeded the manufacturer's specifications. Measured values greater than the Manufacturer's specification limits are marked as 'Failed', measured values within the Manufacturer's specifications are marked as 'Passed'.

This certificate applies exclusively to the item identified above and shall not be reproduced except in full, without National Instruments written authorization. Calibration certificates without signatures are not valid.

The Calibration Certificate can be viewed or downloaded online at www.ni.com/calibration/. To request a hard copy, contact NI Customer Service at Tel:(800) 531-5066 or E-mail customer.service@Nl.com

DEKRA

ISO 9001:2008- Quality Management System (QMS) Certification Applicable scope and other certifications can be found at ni.com/certifications

12-

Victor Peña Technical Manager

Tel: (800) 531-5066

National Instruments Calibration Services Austin Building A 11500 N MoPac Expwy **AUSTIN, TX 78759-3504** USA

Certificate Number: 5618239.1 Page: 2 of 14

Calibration Notes

Ŧ	81-4-
Туре	Note
Asset	Verification and adjustment were performed.

Standards Used

Manufacturer	Model	Туре	Tracking Number	Calibration Due Notes
FLUKE	5700A/EP	Calibrator	2556	25-JUL-2018
National Instruments	PXI-4461	Function generator	9383	25-APR-2019
National Instruments	PXI-4071	Digital multimeter	1901	11-SEP-2018
National Instruments	PXI-4132	SMU	9181	01-JUN-2018

The standards used in this calibration are traceable to NIST and/or other National Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measures (CIPM) mutual recognition agreement (MRA).

Calibration Results

Verify Acc	Verify Accuracy											
Lower Range	Upper Range	Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes				
-5 V	5 V	0	4.00000 V	3.99520 V	3.99982 V	4.00480 V	Passed					
-5 V	5 V	0	0.00000 V	-0.00120 V	-0.00011 V	0.00120 V	Passed					
-5 V	5 V	0	-4.00000 V	-4.00480 V	-4.00003 V	-3,99520 V	Passed					
-5 V	5 V	1	4.00000 V	3.99520 V	4.00015 V	4.00480 V	Passed					
-5 V	5 V	1	0.00000 V	-0.00120 V	0.00009 V	0.00120 V	Passed					
-5 V	5 V	1	-4.00000 V	-4.00480 V	-3.99992 V	-3.99520 V	Passed					
-5 V	5 V	2	4.00000 V	3.99520 V	3.99994 V	4.00480 V	Passed					
-5 V	5 V	2	0.00000 V	-0.00120 V	-0.00005 V	0.00120 V	Passed					
-5 V	5 V	2	-4.00000 V	-4.00480 V	-4.00004 V	-3.99520 V	Passed					
-5 V	5 V	3	4.00000 V	3.99520 V	4.00001 V	4.00480 V	Passed					
-5 V	5 V	3	0.00000 V	-0.00120 V	0.00007 V	0.00120 V	Passed					
-5 V	5 V	3	-4.00000 V	-4.00480 V	-3.99986 V	-3.99520 V	Passed					

Certificate Number: 5618239.1 Page: 4 of 14

Max Gain Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed	
1	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed	
2	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed	·
3	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed	

Verify Phase	Matching						
Max Phase Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status Notes
0	51200	16384	1000 Hz	-0.085 Degrees	0.005 Degrees	0.085 Degrees	Passed
1	51200	16384	1000 Hz	-0.085 Degrees	-0.005 Degrees	0.085 Degrees	Passed
2	51200	16384	1000 Hz	-0.085 Degrees	0.003 Degrees	0.085 Degrees	Passed
3	51200	16384	1000 Hz	-0.085 Degrees	-0.004 Degrees	0.085 Degrees	Passed
0	51200	16384	10000 Hz	-0.490 Degrees	0.066 Degrees	0.490 Degrees	Passed
1	51200	16384	10000 Hz	-0.490 Degrees	-0.066 Degrees	0.490 Degrees	Passed
2	51200	16384	10000 Hz	-0.490 Degrees	0.036 Degrees	0.490 Degrees	Passed
3	51200	16384	10000 Hz	-0.490 Degrees	-0.055 Degrees	0.490 Degrees	Passed
,							

Certificate Number: 5618239.1 Page: 6 of 14

Verify Com	Perify Common Mode Rejection Ratio										
Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes			
0	51200	16384	1000 Hz	40.000 dB	53.655 dB	100.000 dB	Passed				
1	51200	16384	1000 Hz	40.000 dB	98.748 dB	100.000 dB	Passed				
2	51200	16384	1000 Hz	40.000 dB	66.136 dB	100.000 dB	Passed				
3	51200	16384	1000 Hz	40.000 dB	58.554 dB	100.000 dB	Passed				
						and the latest and th					

Page:

7 of 14

Verify IEPE	/erify IEPE Current											
Channel	Rate	DMM Range	Test Value	Low Limit	Reading	High Limit	Status	Notes	ı V			
0	51200	0.01 A	2.000 mA	2,000 mA	2,091 mA	2.200 mA	Passed	_	-			
1_	51200	0.01 A	2.000 mA	2.000 mA	2.070 mA	2.200 mA	Passed	=				
2	51200	0.01 A	2.000 mA	2.000 mA	2.067 mA	2.200 mA	Passed		= 11			
3	51200	0.01 A	2,000 mA	2.000 mA	2.073 mA	2.200 mA	Passed					

Page:

8 of 14

Channel	Rate	SMU Voltage Limit	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	24 V	2 mA	19,000 V	20.884 V	24.000 V	Passed	
1	51200	24 V	2 mA	19.000 V	20.884 V	24.000 V	Passed	
2	51200	24 V	2 mA	19.000 V	20.885 V	24.000 V	Passed	
3	51200	24 V	2 mA	19.000 V	20.887 V	24.000 V	Passed	

Page: 9 of 14

As Left

Verify Acc	uracy								
Lower Range	Upper Range	Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes	
-5 V	5 V	- 0	4.00000 V	3.99520 V	4.00000 V	4.00480 V	Passed		
-5 V	5 V	0	0.00000 V	-0.00120 V	0.00001 V	0.00120 V	Passed		
-5 V	5 V	0	-4.00000 V	-4.00480 V	-3.99999 V	-3.99520 V	Passed		
-5 V	5 V	1	4.00000 V	3.99520 V	4.00005 V	4.00480 V	Passed		•
-5 V	5 V	1	0.00000 V	-0.00120 V	-0.00000 V	0.00120 V	Passed		
-5 V	5 V	1	-4.00000 V	-4.00480 V	-4.00001 V	-3.99520 V	Passed		
-5 V	5 V	2	4.00000 V	3.99520 V	4.00004 V	4.00480 V	Passed		,
-5 V	5 V	2	0.00000 V	-0.00120 V	0.00001 V	0.00120 V	Passed		
-5 V	5 V	2	-4.00000 V	-4.00480 V	-4.00000 V	-3.99520 V	Passed		
-5 V	5 V	3	4.00000 V	3.99520 V	3.99998 V	4.00480 V	Passed		
-5 V	5 V	3	0.00000 V	-0.00120 V	-0.00000 V	0.00120 V	Passed		,
-5 V	5 V	3	-4.00000 V	-4.00480 V	-3.99997 V	-3.99520 V	Passed		

Page:

10 of 14

As Left

Verify Gain Matching										
Max Gain Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes		
0	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed			
1	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed			
2	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed			
3	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed			

Page:

11 of 14

As Left

Verify Phase Matching										
Max Phase Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status Notes			
0	51200	16384	1000 Hz	-0.085 Degrees	0.006 Degrees	0.085 Degrees	Passed			
1	51200	16384	1000 Hz	-0.085 Degrees	-0.006 Degrees	0.085 Degrees	Passed			
2	51200	16384	1000 Hz	-0.085 Degrees	0.003 Degrees	0.085 Degrees	Passed			
3	51200	16384	1000 Hz	-0.085 Degrees	-0.004 Degrees	0.085 Degrees	Passed			
0	51200	16384	10000 Hz	-0.490 Degrees	0.066 Degrees	0.490 Degrees	Passed			
1	51200	16384	10000 Hz	-0.490 Degrees	-0.066 Degrees	0.490 Degrees	Passed			
2	51200	16384	10000 Hz	-0.490 Degrees	0.036 Degrees	0.490 Degrees	Passed			
3	51200	16384	10000 Hz	-0.490 Degrees	-0.055 Degrees	0.490 Degrees	Passed			

Certificate Number: 5618239.1 Page: 12 of 14

Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	16384	1000 Hz	40,000 dB	53.328 dB	100.000 dB	Passed	
1	51200	16384	1000 Hz	40,000 dB	51.629 dB	100.000 dB	Passed	
2	51200	16384	1000 Hz	40.000 dB	56.518 dB	100.000 dB	Passed	
3	51200	16384	1000 Hz	40.000 dB	51.255 dB	100.000 dB	Passed	

Certificate Number: 5618239.1

Page:

13 of 14

Verify IEPE Current								
Channel	Rate	DMM Range	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	0.01 A	2.000 mA	2.000 mA	2.070 mA	2.200 mA	Passed	
1	51200	0.01 A	2.000 mA	2.000 mA	2.070 mA	2.200 mA	Passed	
2	51200	0.01 A	2.000 mA	2.000 mA	2.067 mA	2.200 mA	Passed	
3	51200	0.01 A	2.000 mA	2.000 mA	2.073 mA	2.200 mA	Passed	

Certificate Number: 5618239.1 Page: 14 of 14

Verify IEPE Compliance Voltage								
Channel	Rate	SMU Voltage Limit	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	24 V	2 mA	19.000 V	20,875 V	24,000 V	Passed	
1	51200	24 V	2 mA	19.000 V	20.885 V	24.000 V	Passed	
2	51200	24 V	2 mA	19.000 V	20.886 V	24.000 V	Passed	
3	51200	24 V	2 mA	19.000 V	20.888 V	24.000 V	Passed	

CERTIFICATE of CALIBRATION

Make: PCB Piezotronics

Reference #: 153591

Model: 378B02

Customer: Aercoustics Engineering Ltd

Mississauga, ON

Descr.: Microphone System 1/2" Free Field

Serial #: 132192

P. Order:

2018.08.03C

Asset #: 01161

Cal. status: Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer.

Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.

Our calibration system complies with the requirements of ISO-9001-2008 and is registered under certificate CA96/269, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated: Aug 08, 2018

By: Theam

Cal. Due:

Aug 08, 2020

Petro Onasko

Temperature : 23 °C \pm 2 °C Relative Humidity : 30% to 70%

Standards used: J-216 J-325 J-333 J-420 J-512

Navair Technologies

REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST

6375 Dixie Rd. Mississauga, ON, L5T 2E7

Phone: 905 565 1584

Fax: 905 565 8325

http://www.navair.com e-Mail:service@navair.com

The copyright of this document is the property of Navair Technologies

Any reproduction other than in full requires written approval

6375 Dixie Rd Unit# 7, Mississauga, ON L5T 2E7

Tel: (905)565-1583 Fax: (905)565-8325

-	•		
Form:378B02	Approved by: JR	Feb-16	Ver 1.0
	rippiorod bj. ori	1 00 10	10. 1.0

Calibration Report for Certificate:

153591

Make		Model	Serial	Asset
PCB Piezotronics		378B02	132192	01161
PCB Piezotronics		377B02	174130	

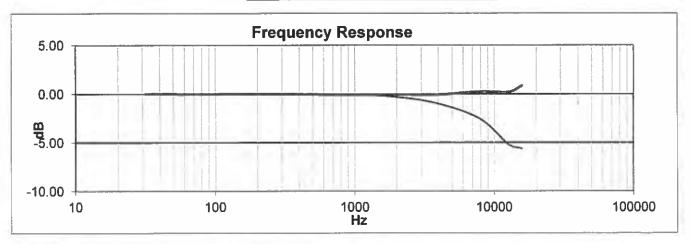
Sensitivity at 250Hz

Specs Nom	Unit	Min	Reading	Max	In/Out
50	mV/Pa	39.72	45.04	62.94	ln
-26.02	dB re 1V/Pa	-28.02	-26.93	-24.02	ln .
0	dB re 50mV/Pa	-2	-0.91	2	ln

Ambient Conditions:

Static Pressure 99.0 kPa

Temperature


23.5°C

Rel.Humidity

55.0%

Frequency response

		_
Lower	Upper	
Pressure	Free Field	
dB	dB	
0.02	0.02	
0.00	0.00	
0.00	0.00	
0.00	0.00	ref
-0.02	-0.02	
-0.10	-0.08	
-0.31	-0.05	
-0.99	-0.07]
-2.55	0.24	
-5.19	0.20	
-5.63	0.86	
	Pressure dB 0.02 0.00 0.00 0.00 -0.02 -0.10 -0.31 -0.99 -2.55 -5.19	Pressure Free Field dB dB 0.02 0.02 0.00 0.00 0.00 0.00 -0.02 -0.02 -0.10 -0.08 -0.31 -0.05 -0.99 -0.07 -2.55 0.24 -5.19 0.20

West Caldwell Calibration Laboratories Inc.

Certificate of Calibration

for

MICROPHONE UNIT

Manufactured by: PCB PIEZOTRONICS

Model No: 378B02 Serial No: 125630 Calibration Recall No: 28284

Submitted By:

Customer:

Company: Aerocoustics Engineering Ltd.

Address:

The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No. 378B02 PCB PI

Upon receipt for Calibration, the instrument was found to be:

Within (X)

tolerance of the indicated specification. See attached Report of Calibration.

The information supplied relates to the calibrated item listed above.

West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025

Note: With this Certificate, Report of Calibration is included.

Approved by:

FC

Calibration Date:

19-Jan-18

Felix Christopher (QA Mgr.)

Certificate No:

28284 - 1

QA Doc. #1051 Rev. 2.0 10/1/01

Certificate Page 1 of 1

ISO/IEC 17025:2005

West Caldwell
Calibration
Laboratories, Inc.

1575 State Route 96, Victor, NY 14564, U.S.A.

ACCREDITED

Calibration Lab. Cert. # 1533.01

West Caldwell Calibration uncompromised calibration Laboratories, Inc. ISO/IEC 17025: 2005

Calibration Lab. Cert. # 1533.01

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

PCB Piezotronics Microphone Unit

Model No.: 378B02 Mic Model No.: 377B02

Preamp Model No.: 426E01

Company: Aerocoustics Engineering Ltd.

Serial No.: 125630

Serial No.: 167926 Serial No.: 044003

ID No.: XXXX

Calibration results:

After data: ...X...

Ambient Temperature:

22.0

Combined Sensitivity @

250 and pressure of 99.063 kPa Ambient Humidity: Ambient Pressure

30.1 99.063

% RH kPa

(Sens. with mic. and preamp.)

0 Volts Polarization voltage (External):

Calibration Date:

19-Jan-2018

-27.46 dB re.1V/Pascal

42.36 mV/Pascal

Calibration Due:

19-Jan-2019

1.46 Ko (- dB re 50 mV/Pascal) Sensitivity:

Report Number:

28284 -1

Freq. Response:

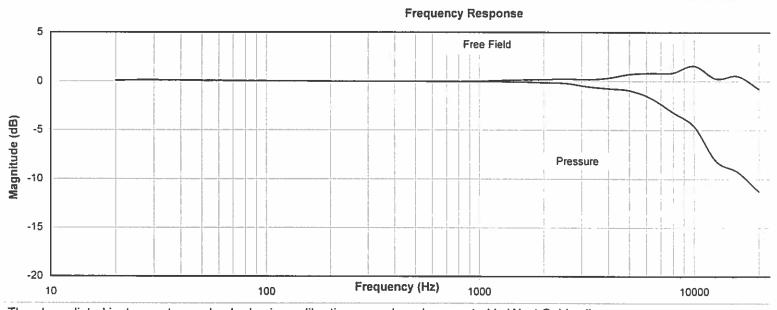
Pass

Control Number:

28284

Pass

All tests: Pass


The above listed instrument meets or exceeds the tested manufacturer's specifications.

The IEC 651:type 1 and ANSI S1.4 1983 specification passed.

This Calibration is traceable through NIST test numbers:

The expanded uncertainty of calibration: 0.12 dB at 95% confidence level with a coverage factor of k=2.

The pressure response recorded with electroacoustic method.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 P378B02PCB

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, ISO 17025

Measurements performed by:...

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Felix Christopher

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 P378B02PCB

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

PCB Piezotronics Microphone Unit

Model No.: 378B02

Serial No.: 125630 ID No.: XXXX

Company: Aerocoustics Engineering Ltd.

Frequency Response (Reference = 0 dB @ 250Hz)

Frequency	Pressure	Free Field
[Hz]	[dB]	[dB]
19.95	0.11	0.11
25.12	0.14	0.14
31.62	0.14	0.14
39.81	0.12	0.12
50.12	0.11	0.11
63.10	0.09	0.09
79.43	0.06	0.06
100.00	0.05	0.05
125.89	0.03	0.03
158.49	0.03	0.03
199.53	0.01	0.01
251.19	0.00	0.00
316.23	0.00	0.00
398.11	-0.01	-0.01
501.19	-0.01	-0.01
630.96	-0.02	-0.02
794.33	-0.02	-0.02
1000.00	-0.04	0.07
1258.93	-0.06	0.10
1584.89	-0.08	0.15
1995.26	-0.14	0.19
2511.89	-0.21	0.27
3162.28	-0.54	0.18
3981.07	-0.74	0.36
5011.87	-0.94	0.74
6309.57	-1.72	0.86
7943.28	-3.13	0.87
10000.00	-4.62	1.59
12589.25	-8.14	0.29
15848.93	-9.27	0.55
19952.62	-11.27	-0.77

Freq. response: Expanded Uncertainty (dB) with coverage factor K = 2 20 to 63Hz 0.1dB, 63 to 12.5kHz 0.094dB, 12.5k to 16kHz 0.10dB, 16k to 20kHz 0.5dB.

ļ	nstruments used for ca	alibration:		Date of Cal.	Traceability No.	Re-cal, Due Date	
	Brüel & Kjær	4226	S/N 1445428	11-Aug-2017	683/284413-14	11-Aug-2018	
	Brüel & Kjær	3560	S/N 2241893	11-Aug-2017	683/284413-14	11-Aug-2018	
	HP	33120A	S/N 36043716	11-Aug-2017	,287708	11-Aug-2018	
	HP	34401A	S/N 36064102	11-Aug-2017	,287708	11-Aug-2018	

Cal. Date: 19-Jan-2018

Tested by: Felix Christopher

Calibrated on WCCL system type 9700

This document shall not be reproduced except in full without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 P378B02PCB

CERTIFICATE of CALIBRATION

Make: PCB Piezotronics Reference #: 151680

Model: 480E09 Customer: Aercoustics Engineering Ltd

Mississauga, ON

Descr.: Conditioning Amplifier

Serial #: 34423 P. Order: 2018.02.20C

Asset #: 00980

Cal. status: Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer.

Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.

Our calibration system complies with the requirements of ISO-17025 standard, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated: Mar 01, 2018

 $\mathsf{B}\mathsf{y}$:

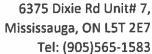
Cal. Due: Mar 01, 2019

J. Raposo

Temperature : 23 °C \pm 2 °C Relative Humidity : 30% to 70%

Standards used: J-215 J-512

Navair Technologies


REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST

6375 Dixie Rd. Mississauga, ON, L5T 2E7

Phone: 905 565 1584 Fax: 905 565 8325

http://www.navair.com e-Mail: service @ navair.com

The copyright of this document is the property of Navair Technologies Any reproduction other than in full requires written approval!

Fax: (905)565-8325

Form:480E09	Approved by:jr	Date:Feb/18	ver1.0

Calibration Report for Certificate :

151680

Make	Model	Serial	Asset	
PCB	480E09	34423	980	
Piezotronics				

A TOTAL CONTRACTOR OF THE PROPERTY OF THE PROP				
Test	Min	Reading	Max	In/Out

Gain accuracy at 1kHz

Gain Set	Input V		V		
xl	1	0.9800	1.0000	1.0200	In
x10	0.1	0.9800	1.0003	1.0200	In
x100	0.01	0.9800	1.0001	1.0200	In

Gain Flatness

X1

I/P Hz

10	1	-5.0	±0.1	5.0	In
10000	1	-5.0	±0.1	5.0	In
50000	1	-5.0	±0.1	5.0	In
100000	1	-5.0	±0.1	5.0	In

X10

I/P Hz			8		
10	0.1	-5.0	±0.1	5.0	In
10000	0.1	-5.0	±0.1	5.0	In
50000	0.1	-5.0	-0.3	5.0	In
100000	0.1	-5.0	-1.1	5.0	In

X100

I/P Hz_			¥			
10	0.01	-5.0	±0.1	5.0		In
10000	0.01	-5.0	-0.9	5.0	_[In
50000	0.01	-5.0	-4.9	5.0	1	In

Compliant Calibration Certificate

CALIBRATED SNUD __ TASE7FC

DANE 22-MAY-2018

CHE 22-MAY 2019

Date Printed:

5618371.1

OE Number:

Customer:

22-MAY-2018

Page:

1 of 14

21401260

Certificate Number:

Aercoustics Engineering LTD (CA)

1004 Middlegate Road

Suite 1100

MISSISSAUGA, L4Y 0G1

CANADA

Manufacturer: Serial Number: **National Instruments**

1A5E7FC

Part Number:

195551B-01L

Description:

Model:

NI 9234

MODULE ASSY, NI 9234, 4 AI

CONFIGURABLE

Calibration Date:

22-MAY-2018

Procedure Name:

NI 9234

Verification Results:

22-MAY-2019 As Found: Passed

As Left: Passed

Procedure Version:

3.6.1.0

Calibration Executive Version:

Recommended Calibration Due:

4.2.1.0

Lab Technician:

Rodolfo Maldonado

Driver Info:

NI-DAQmx:17.1.0

Temperature:

23.0° C

Humidity:

44.3% RH

The data found in this certificate must be interpreted as: As Found

The calibration data of the unit as received by National Instruments.

As Left

The calibration data of the unit when returned from National Instruments.

The As Found and As Left readings are identical for units not adjusted or repaired.

This calibration conforms to ANSI/NCSL Z540.1-1994 (R2002) requirements.

The TAR (Test Accuracy Ratio) of this calibration is maintained at a ratio of 4:1 or greater, unless otherwise indicated in the measurements. A TAR determination is not possible for singled sided specification limits and therefore the absence of a value should not be interpreted as a TAR of 4:1 or greater, but rather undetermined. When provided, the expanded measurement uncertainty is calculated according to the Guide to the Expression of Uncertainty in Measurement (GUM) for a confidence level of approximately 95%. The uncertainty is calculated at time of calibration and does not include the object long-term stability and different environmental and operational conditions.

Results are reviewed to establish where any measurement results exceeded the manufacturer's specifications. Measured values greater than the Manufacturer's specification limits are marked as 'Failed', measured values within the Manufacturer's specifications are marked as 'Passed'.

This certificate applies exclusively to the item identified above and shall not be reproduced except in full, without National Instruments written authorization. Calibration certificates without signatures are not valid.

The Calibration Certificate can be viewed or downloaded online at www.ni.com/calibration/. To request a hard copy, contact NI Customer Service at Tel:(800) 531-5066 or E-mail customer.service@Nl.com

DEKRA

ISO 9001:2008- Quality Management System (QMS) Certification Applicable scope and other certifications can be found at ni.com/certifications

Victor Peña **Technical Manager**

National Instruments Calibration Services Austin Building A 11500 N MoPac Expwy **AUSTIN, TX 78759-3504** USA Tel: (800) 531-5066

ty the

Certificate Number: 5618371.1 Page: 2 of 14

Calibration Notes

Туре	Note		
Asset	Verification and adjustment were performed.	\$89000 === C T-	- 2

Standards Used

Manufacturer	Model	Туре	Tracking Number	Calibration Due	Notes
FLUKE	5700A/EP	Calibrator	2556	25-JUL-2018	
National Instruments	PXI-4461	Function generator	9383	25-APR-2019	
National Instruments	PXI-4071	Digital multimeter	1901	11-SEP-2018	Marine and American
National Instruments	PXI-4132	SMU	9181	01-JUN-2018	

The standards used in this calibration are traceable to NIST and/or other National Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measures (CIPM) mutual recognition agreement (MRA).

Certificate Number: 5618371.1

Page: 3 of 14

Calibration Results

Verify Acc	uracy							
Lower Range	Upper Range	Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
-5 V	5 V	0	4.00000 V	3.99520 V	3.99936 V	4.00480 V	Passed	
-5 V	5 V	0	0.00000 V	-0.00120 V	-0.00022 V	0.00120 V	Passed	
-5 V	5 V =	0	-4.00000 V	-4.00480 V	-3.99978 V	-3.99520 V	Passed	
-5 V	5 V	1	4.00000 V	3.99520 V	3.99975 V	4.00480 V	Passed	
-5 V	5 V	1	0.00000 V	-0.00120 V	0.00001 V	0.00120 V	Passed	
-5 V	5 V	1	-4.00000 V	-4.00480 V	-3.99973 V	-3.99520 V	Passed	
-5 V	5 V	2	4.00000 V	3.99520 V	3.99969 V	4.00480 V	Passed	
-5 V	5 V	2	0.00000 V	-0.00120 V	-0.00002 V	0.00120 V	Passed	
-5 V	5 V	2	-4.00000 V	-4.00480 V	-3.99971 V	-3.99520 V	Passed	
-5 V	5 V	3	4.00000 V	3.99520 V	3.99949 V	4.00480 V	Passed	
-5 V	5 V	3	0.00000 V	-0.00120 V	-0.00005 V	0.00120 V	Passed	
-5 V	5 V	3	-4.00000 V	-4.00480 V	-3.99961 V	-3.99520 V	Passed	

Certificate Number: 5618371.1 Page: 4 of 14

_	Samples						
Rate	per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed	
10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed	
10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed	
10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed	
	10240 10240 10240	Channel 10240 10240 10240 10240 10240 10240	Channel 10240 10240 4 V 10240 10240 4 V 10240 10240 4 V	Channel 10240 10240 4 V -0.040 dB 10240 10240 4 V -0.040 dB 10240 10240 4 V -0.040 dB	Channel 10240 10240 4 V -0.040 dB -0.000 dB 10240 10240 4 V -0.040 dB 0.000 dB 10240 10240 4 V -0.040 dB 0.000 dB	Channel 10240 10240 4 V -0.040 dB -0.000 dB 0.040 dB 10240 10240 4 V -0.040 dB 0.000 dB 0.040 dB 10240 10240 4 V -0.040 dB 0.000 dB 0.040 dB	Channel 10240 10240 4 V -0.040 dB -0.000 dB 0.040 dB Passed 10240 10240 4 V -0.040 dB 0.000 dB 0.040 dB Passed 10240 10240 4 V -0.040 dB 0.000 dB 0.040 dB Passed

Verify Phase Matching								
Max Phase Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	16384	1000 Hz	-0.085 Degrees	-0.013 Degrees	0.085 Degrees	Passed	
1	51200	16384	1000 Hz	-0.085 Degrees	0.013 Degrees	0.085 Degrees	Passed	
2	51200	16384	1000 Hz	-0.085 Degrees	-0.011 Degrees	0.085 Degrees	Passed	
3	51200	16384	1000 Hz	-0.085 Degrees	0.009 Degrees	0.085 Degrees	Passed	
0	51200	16384	10000 Hz	-0.490 Degrees	-0.124 Degrees	0.490 Degrees	Passed	
1	51200	16384	10000 Hz	-0.490 Degrees	0.124 Degrees	0.490 Degrees	Passed	
2	51200	16384	10000 Hz	-0.490 Degrees	-0.107 Degrees	0.490 Degrees	Passed	
3	51200	16384	10000 Hz	-0.490 Degrees	0.087 Degrees	0.490 Degrees	Passed	

Certificate Number: 5618371.1 Page: 6 of 14

Verify Com	erify Common Mode Rejection Ratio									
Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes		
0	51200	16384	1000 Hz	40.000 dB	51.642 dB	100,000 dB	Passed			
1	51200	16384	1000 Hz	40,000 dB	54.544 dB	100,000 dB	Passed			
2	51200	16384	1000 Hz	40.000 dB	51.748 dB	100.000 dB	Passed			
3	51200	16384	1000 Hz	40.000 dB	50.623 dB	100.000 dB	Passed			

Verify IEPE	Verify IEPE Current							
Channel	Rate	DMM Range	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	0.01 A	2.000 mA	2.000 mA	2.085 mA	2.200 mA	Passed	
1	51200	0.01 A	2.000 mA	2.000 mA	2.067 mA	2.200 mA	Passed	
2	51200	0.01 A	2.000 mA	2.000 mA	2.054 mA	2.200 mA	Passed	
3	51200	0.01 A	2.000 mA	2.000 mA	2.075 mA	2.200 mA	Passed	

Certificate Number: 5618371.1 Page: 8 of 14

Verify IEPE	Verify IEPE Compliance Voltage										
Channel	Rate	SMU Voltage Limit	Test Value	Low Limit	Reading	High Limit	Status	Notes			
0	51200	24 V	2 mA	19.000 V	20.877 V	24.000 V	Passed				
1	51200	24 V	2 mA	19.000 V	20.883 V	24.000 V	Passed				
2	51200	24 V	2 mA	19.000 V	20.885 V	24.000 V	Passed				
3	51200	24 V	2 mA	19.000 V	20.880 V	24.000 V	Passed				
4											

As Left

Verify Acc	Verify Accuracy										
Lower Range	Upper Range	Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes			
-5 V	5 V	0	4.00000 V	3.99520 V	4.00000 V	4.00480 V	Passed				
-5 V	5 V	0	0.00000 V	-0.00120 V	0.00000 V	0.00120 V	Passed				
-5 V	5 V	0	-4.00000 V	-4.00480 V	-3.99998 V	-3.99520 V	Passed				
-5 V	5 V	1	4.00000 V	3.99520 V	4.00000 V	4.00480 V	Passed				
-5 V	5 V	1 _	0.00000 V	-0.00120 V	0.00000 V	0.00120 V	Passed				
-5 V	5 V	1 1	-4.00000 V	-4.00480 V	-3.99999 V	-3.99520 V	Passed				
-5 V	5 V	2	4.00000 V	3.99520 V	3.99997 V	4.00480 V	Passed				
-5 V	5 V	2	0.00000 V	-0.00120 V	-0.00000 V	0.00120 V	Passed				
-5 V	5 V	2	-4.00000 V	-4.00480 V	-3.99996 V	-3.99520 V	Passed				
-5 V	5 V	3	4.00000 V	3.99520 V	4.00000 V	4.00480 V	Passed				
-5 V	5 V	3	0.00000 V	-0.00120 V	0.00001 V	0.00120 V	Passed				
-5 V	5 V	3	-4.00000 V	-4.00480 V	-4.00000 V	-3.99520 V	Passed				
-5 V	5 V	3	-4.00000 V	-4.00480 V	-4.00000 V	-3.99520 V	Passed				

Certificate Number: 5618371.1 Page: 10 of 14

Verify Gain Matching										
Max Gain Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes		
0	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed			
1	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed			
2	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed			
3	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed			

Verify Phase	Verify Phase Matching									
Max Phase Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes		
0	51200	16384	1000 Hz	-0.085 Degrees	-0.013 Degrees	0.085 Degrees	Passed	- 4		
1	51200	16384	1000 Hz	-0.085 Degrees	0.013 Degrees	0.085 Degrees	Passed			
2	51200	16384	1000 Hz	-0.085 Degrees	-0.011 Degrees	0.085 Degrees	Passed	_		
3	51200	16384	1000 Hz	-0.085 Degrees	0.009 Degrees	0.085 Degrees	Passed			
0	51200	16384	10000 Hz	-0.490 Degrees	-0.124 Degrees	0.490 Degrees	Passed			
1	51200	16384	10000 Hz	-0.490 Degrees	0.124 Degrees	0.490 Degrees	Passed			
2	51200	16384	10000 Hz	-0.490 Degrees	-0.107 Degrees	0.490 Degrees	Passed			
3	51200	16384	10000 Hz	-0.490 Degrees	0.087 Degrees	0.490 Degrees	Passed			

Certificate Number: 5618371.1 Page: 12 of 14

Verify Common Mode Rejection Ratio										
Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes		
0	51200	16384	1000 Hz	40.000 dB	51.573 dB	100,000 dB	Passed			
1	51200	16384	1000 Hz	40.000 dB	50.549 dB	100.000 dB	Passed			
2	51200	16384	1000 Hz	40.000 dB	79,583 dB	100.000 dB	Passed			
3	51200	16384	1000 Hz	40.000 dB	57.678 dB	100.000 dB	Passed			

Certificate Number: 5618371.1

Page:

13 of 14

Verify IEPE	Verify IEPE Current										
Channel	Rate	DMM Range	Test Value	Low Limit	Reading	High Limit	Status	Notes	-lig		
0	51200	0.01 A	2.000 mA	2.000 mA	2.075 mA	2.200 mA	Passed				
1	51200	0.01 A	2.000 mA	2.000 mA	2.067 mA	2.200 mA	Passed				
2	51200	0.01 A	2.000 mA	2.000 mA	2.054 mA	2.200 mA	Passed				
3	51200	0.01 A	2.000 mA	2.000 mA	2.075 mA	2.200 mA	Passed				

Certificate Number: 5618371.1 Page: 14 of 14

Verify IEPE	Verify IEPE Compliance Voltage										
Channel	Rate	SMU Voltage Limit	Test Value	Low Limit	Reading	High Limit	Status	Notes			
0	51200	24 V	2 mA	19.000 V	20.882 V	24,000 V	Passed				
1	51200	24 V	2 mA	19.000 V	20.885 V	24,000 V	Passed				
2	51200	24 V	2 mA	19.000 V	20.887 V	24.000 V	Passed	*			
3	51200	24 V	2 mA	19.000 V	20.880 V	24,000 V	Passed				

Tel 802.316.4368 · Fax 802.735.9106 · www.sohwind.com

CERTIFICATE FOR CALIBRATION OF SONIC ANEMOMETER

Certificate number: 18.US1.05216

Date of issue: October 16, 2018

Type: Vaisala Weather Transmitter, WXT536

Serial number: M4910194

Manufacturer: Vaisala, Oyj, Pl 26, FIN-00421 Helsinki, Finland

Client: Aercoustics Engineering Ltd., 1004 Middlegate RD, Suite 1100, S.Tower, Mississauga, ON L4Y 1M4, Canada

Anemometer received: October 15, 2018

Anemometer calibrated: October 15, 2018

Calibrated by: MEJ

Procedure: MEASNET, IEC 61400-12-1:2017 Annex F

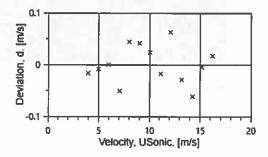
Certificate prepared by: EJF Approved by: Calibration engineer, EJF

Calibration equation obtained: $v[m/s] = 0.97547 \cdot f[m/s] + 0.12348$

Standard uncertainty, slope: 0.00287 Covariance: -0.0000789 (m/s)2/m/s

Standard uncertainty, offset: 0.24434

Coefficient of correlation: $\rho = 0.999955$


Absolute maximum deviation: 0.063 m/s at 11.973 m/s

Barometric pressure: 1002.7 hPa

Relative humidity: 40.1%

Succession	Velocity	Tempera	ature in	Wind	Anemometer	Deviation,	Uncertainty
	pressure, q.	wind tunnel	d.p. box	velocity, v.	Output, f.	d.	$u_c (k=2)$
	[Pa]	[°C]	[°C]	[m/s]	[m/s]	[m/s]	[m/s]
2	9.32	20.2	27.1	3.963	3.9533	-0.017	0.020
4	14.71	20.3	27.1	4.979	4.9862	-0.008	0.023
6	21.14	20.3	27.2	5.970	5.9933	0.000	0.026
8	28.86	20.4	27.2	6.976	7.0767	-0.051	0.029
10	37.81	20.4	27.2	7.984	8.0133	0.044	0.033
12	47.82	20.4	27.2	8.980	9.0367	0.042	0.037
13-last	58.82	20.4	27.2	9.959	10.0586	0.024	0.041
11	71.14	20.4	27.2	10.953	11.1200	-0.018	0.045
9	85.00	20.3	27.2	11.973	12.0833	0.063	0.049
7	99.63	20.3	27.2	12.963	13.1917	-0.029	0.053
5	115.71	20.3	27.2	13.969	14.2567	-0.061	0.057
3	132.13	20.2	27.1	14.926	15.1800	-0.005	0.061
1-first	150.91	20.2	27.1	15.950	16.2067	0.017	0.065

Fair Jefile

EQUIPMENT USED

Serial Number	Description	
Njord1	Wind tunnel, blockage factor = 1.0035	
2254	Control cup anemometer	
	Mounting tube, D = 19 mm	
TT002	Summit Electronics, 1XPT100, 0-10V Output, wind tunnel temp.	
TP001	PR Electronics 5102, 0-10V Output, differential pressure box temp.	
DP005	Setra Model 239, 0-1inWC, differential pressure transducer	
HY003	Dwyer RHP-2D20, 0-10V Output, humidity transmitter	
BP003	Setra M278, 0-5VDC Output, barometer	
PL8	Pitot tube	
XB002 Computer Board. 16 bit A/D data acquisition board		
9PRZRW1	PC dedicated to data acquisition	

Traceable calibrations of the equipment are carried out by external accredited institutions: Atlantic Scale, Essco Calibration Labs & Furness Controls. A real-time analysis module within the data acquisition software detects pulse frequency.



Photo of the wind tunnel setup. The cross-sectional area is 2.5m x 2.5m.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the IEC 61400-12-1:2005 procedure. See Document US.12.01.004 for further details.

COMMENTS

This sensor was calibrated at 90°.

Certificate number: 18.US1.05216

Tel 802.316.4368 · Fax 802.735.9106 · www.sohwind.com

CERTIFICATE FOR CALIBRATION OF SONIC ANEMOMETER

Certificate number: 18.US1.05215 Date of issue: October 16, 2018 Type: Vaisala Weather Transmitter, WXT536 Serial number: M4910194

Manufacturer: Vaisala, Oyj, Pl 26, FIN-00421 Helsinki, Finland

Client: Aercoustics Engineering Ltd., 1004 Middlegate RD, Suite 1100, S.Tower, Mississauga, ON L4Y 1M4, Canada

Anemometer received: October 15, 2018

Calibrated by: MEJ

Certificate prepared by: EJF

Anemometer calibrated: October 15, 2018

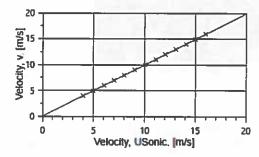
Procedure: MEASNET, IEC 61400-12-1:2017 Annex F

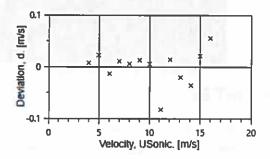
Approved by: Calibration engineer, EJF

Calibration equation obtained: $v \text{ [m/s]} = 0.99274 \cdot \text{ f [m/s]} + 0.01283$

Standard uncertainty, slope: 0.00259 Covariance: -0.0000662 (m/s)2/m/s

Standard uncertainty, offset: 2.14422


Coefficient of correlation: $\rho = 0.999963$


Absolute maximum deviation: -0.083 m/s at 10.969 m/s

Barometric pressure: 1002,9 hPa

Relative humidity: 40.4%

Succession	Velocity	Tempera	ature in	Wind	Anemometer	Deviation,	Uncertainty
	pressure, q.	wind tunnel	d.p. box	velocity, v.	Output, f.	d.	u _c (k=2)
	[Pa]	[°C]	[°C]	[m/s]	[m/s]	[m/s]	[m/s]
2	9.36	19.9	27.1	3.968	3.9767	0.007	0.020
4	14.64	20.0	27.1	4.965	4.9655	0.022	0.023
6	21.23	20.0	27.1	5.979	6.0233	-0.014	0.026
8	28,90	20.1	27.1	6.976	7.0033	0.010	0.029
10	37.66	20.1	27.1	7.964	8.0033	0.006	0.033
12	47.84	20.1	27.1	8.977	9.0167	0.013	0.037
13-last	58.96	20.1	27.1	9.966	10.0207	0.005	0.041
11	71.43	20.1	27.1	10.969	11.1200	-0.083	0.045
9	85.15	20.1	27.1	11.976	12.0367	0.014	0.049
7	99.78	20.0	27.1	12.964	13.0667	-0.021	0.053
5	115.73	20.0	27.1	13.961	14.0867	-0.036	0.057
3	132.27	19.9	27.1	14.924	15.0000	0.021	0.061
1-first	151.01	19.9	27.1	15.945	15.9933	0.055	0.065

in Jefeld

EQUIPMENT USED

Serial Number	Description	
Njord1	Wind tunnel, blockage factor = 1.0035	
2254	Control cup anemometer	
2	Mounting tube, D = 19 mm	
TT002	Summit Electronics, 1XPT100, 0-10V Output, wind tunnel temp.	
TP001	PR Electronics 5102, 0-10V Output, differential pressure box temp.	
DP005	Setra Model 239, 0-1inWC, differential pressure transducer	
HY003	Dwyer RHP-2D20, 0-10V Output, humidity transmitter	
BP003	Setra M278, 0-5VDC Output, barometer	
PL8	Pitot tube	
XB002	Computer Board. 16 bit A/D data acquisition board	
PRZRW1 PC dedicated to data acquisition		

Traceable calibrations of the equipment are carried out by external accredited institutions: Atlantic Scale, Essco Calibration Labs & Furness Controls. A real-time analysis module within the data acquisition software detects pulse frequency.

Photo of the wind tunnel setup. The cross-sectional area is 2.5m x 2.5m.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the IEC 61400-12-1:2005 procedure. See Document US.12.01.004 for further details.

COMMENTS

This sensor was calibrated at 0°.

Certificate number: 18.US1.05215

CERTIFICATE of CALIBRATION

Make: PCB Piezotronics Reference #: 152968

Model: 480E09 Customer: Aercoustics Engineering Ltd

Mississauga, ON

Descr.: Conditioning Amplifier

Serial #: 00033661 P. Order: 2018.06.15C

Asset #: 00140

Cal. status: Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer.

Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.

Our calibration system complies with the requirements of ISO-9001-2008 and is registered under certificate CA96/269, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated: Jun 19, 2018

V: Colicar

Cal. Due: Jun 19, 2019

Petro Onasko

Temperature : 23 °C \pm 2 °C Relative Humidity : 30% to 70%

Standards used: J-255 J-367 J-512

Navair Technologies

REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST

6375 Dixie Rd Mississauga, ON, L5T 2E7 Phone: 905 565 1584

Fax: 905 565 8325

http://www.navair.com e-Mail_service@navair.com

The copyright of this document is the property of Navair Technologies Any reproduction other than in-full requires written approval

6375 Dixie Rd Unit# 7, Mississauga, ON L5T 2E7 Tel: (905)565-1583

Fax: (905)565-8325

Form: 480E	09	Approved by	: JR	Jun-18		ver 1.2
Calibratio	on Report fo	or Certificate	e :			152968
Make		Model	Serial		Asset	
PCB		480E09	00033661		00140	
Piezotron	ics					
Test		Min	Reading	Max		In/Out
Gain accu	racy at 1kHz	Z				
Gain Set	Input		V			
x1	1.000 V	0.9800	1.0000	1.0200		In
×10	0.100 V	0.9800	1.0005	1.0200		In
x100	0.010 V	0.9800	0.9987	1.0200		In
Gain Flat X1 I/P Hz	ness		8			
10	1.000 V	-5.0	0.0	5.0		In
10000	1.000 V	-5.0	0.0	5.0		In
50000	1.000 V	-5.0	0.1	5.0		In
100000	1.000 V	-5.0	0.4	5.0		In
X10 I/P Hz			8			
10	0.100 V	-5.0	0.0	5.0	Τ	In
10000	0.100 V	-5.0	0.0	5.0	1	In
50000	0.100 V	-5.0	-0.2	5.0		In
100000	0.100 V	-5.0	-1.1	5.0		In
X100						
I/P Hz			8			
10	0.010 V	-5.0	0.1	5.0		In
10000	0.010 V	-5.0	-0.2	5.0	1	In

CERTIFICATE of CALIBRATION

Make: PCB Piezotronics

Reference #: 152972

Model: 378B02

Customer: Aercoustics Engineering Ltd

Mississauga, ON

Descr.: Microphone System 1/2" Free Field

Serial #: 120586

P. Order:

2018.06.15C

Asset #: 00811

Cal. status: Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer.

Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.

Our calibration system complies with the requirements of ISO-9001-2008 and is registered under certificate CA96/269, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated: Jun 20, 2018

Petro Onasko

Cal. Due: Jun 20, 2019

Temperature: 23 °C ± 2 °C Relative Humidity: 30% to 70%

Standards used: J-216 J-333 J-512

Navair Technologies

REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST

6375 Dixie Rd. Mississauga, ON, L5T 2E7

Phone: 905 565 1584

Fax: 905 565 8325

http://www.navair.com e-Mail_service@navair.com

The copyright of this document is the property of Navair Technologies

Any reproduction other than in full requires written approval

6375 Dixie Rd Unit#7, Mississauga, ON L5T 2E7 Tel: (905)565-1583

Fax: (905)565-8325

Form:378B02 Approved by: JR Feb-16 Ver 1.0			
		Feb-16	Ver 1.0

Calibration Report for Certificate:

152972

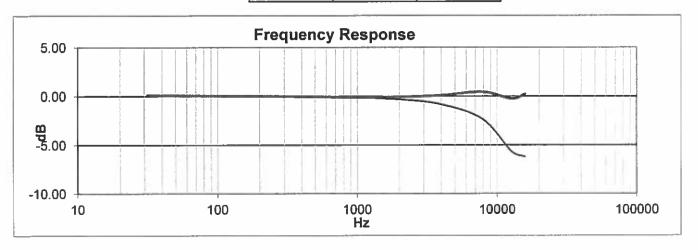
Make	Model	Serial	Asset
PCB Piezotronics	378B02	120586	00811
PCB Piezotronics	377B02	155523	00811

Sensitivity at 250Hz

			1		
Specs Nom	Unit	Min	Reading	Max	In/Out
50	mV/Pa	39.72	42.90	62.94	ln
-26.02	dB re 1V/Pa	-28.02	-27.35	-24.02	ln
0	dB re 50mV/Pa	-2	-1.33	2	ln

Ambient Conditions: Static Pressure 99.2 kPa

Temperature


24.2°C

Rel.Humidity

41.0%

Frequency response

	Lower	Upper	l
Freq	Pressure	Free Field	
Hz	dB	dB	}
31.5	0.10	0.10]
63.1	_0.06	0.06	
125.9	0.03	0.03	
251.3	0.00	0.00	ref
502.5	-0.05	-0.05	
1005.1	-0.16	-0.12	
1978.7	-0.31	-0.06	
3957.5	-0.82	0.09]
7914.9	-2.36	0.43]
12663	-5.68	-0.26]
15830	-6.24	0.21	

CERTIFICATE FOR CALIBRATION OF SONIC ANEMOMETER

Certificate number: 18.US1.05429 Date of issue: October 26, 2018

Type: Vaisala Weather Transmitter, WXT536 Serial number: M4910193

Manufacturer: Vaisala, Oyj, Pl 26, FIN-00421 Helsinki, Finland

Client: Aercoustics Engineering Ltd., 1004 Middlegate RD, Suite 1100, S.Tower, Mississauga, ON L4Y 1M4, Canada

Anemometer received: October 24, 2018

Calibrated by: MEJ

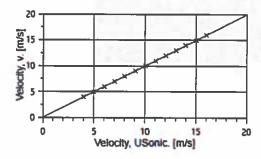
L. 1401

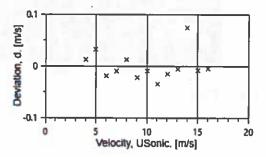
Procedure: MEASNET, IEC 61400-12-1:2017 Annex F

Anemometer calibrated: October 24, 2018

Certificate prepared by: EJF Approved by: Calibration engineer, EJF

Calibration equation obtained: $v \text{ [m/s]} = 0.99427 \cdot \text{ f [m/s]} + -0.00309$


Standard uncertainty, slope: 0.00217 Covariance: -0.0000468 (m/s)²/m/s Standard uncertainty, offset: -7.47829 Coefficient of correlation: $\rho = 0.999974$


Absolute maximum deviation: 0.074 m/s at 13.961 m/s

Barometric pressure: 1005.3 hPa

Relative humidity: 29.5%

Succession	Velocity	Temperature in		Wind	Anemometer	Deviation,	Uncertainty
	pressure, q.	wind tunnel	d.p. box	velocity, v.	Output, f.	d.	u _c (k=2)
	[Pa]	[°C]	[°C]	[m/s]	[m/s]	[m/s]	[m/s]
2	9.31	22.4	28.1	3.970	3.9833	0.012	0.020
4	14.59	22.4	28.1	4.969	4.9690	0.032	0.023
6	20.99	22.4	28.1	5.960	6,0167	-0.019	0.026
8	28.65	22.5	28.1	6.964	7.0167	-0.010	0.029
10	37.48	22.5	28.1	7.965	8.0017	0.012	0.033
12	47.74	22.5	28.1	8.989	9.0667	-0.022	0.037
13-last	58.81	22.5	28.1	9.978	10.0483	-0.010	0.041
11	70.85	22.5	28.1	10.952	11.0533	-0.035	0.045
9	84.43	22.5	28.1	11.956	12.0433	-0.015	0.049
7	99.24	22.4	28.1	12.963	13.0467	-0.006	0.053
5	115.11	22.4	28.1	13.961	13.9700	0.074	0.057
3	131.52	22.4	28.1	14.923	15.0200	-0.008	0.061
1-first	149.84	22.3	28.1	15.927	16.0267	-0.005	0.065

EQUIPMENT USED

Serial Number	Description			
Njord1	Wind tunnel, blockage factor = 1.0035			
2254	Control cup anemometer			
	Mounting tube, $D = 19 \text{ mm}$			
TT002	Summit Electronics, 1XPT100, 0-10V Output, wind tunnel temp.			
TP001	PR Electronics 5102, 0-10V Output, differential pressure box temp.			
DP005	Setra Model 239, 0-1inWC, differential pressure transducer			
HY003	Dwyer RHP-2D20, 0-10V Output, humidity transmitter			
BP003	Setra M278, 0-5VDC Output, barometer			
PL8	Pitot tube			
XB002	Computer Board. 16 bit A/D data acquisition board			
9PRZRW1	PC dedicated to data acquisition			

Traceable calibrations of the equipment are carried out by external accredited institutions: Atlantic Scale, Essco Calibration Labs & Furness Controls. A real-time analysis module within the data acquisition software detects pulse frequency.

Photo of the wind tunnel setup. The cross-sectional area is 2.5m x 2.5m.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the IEC 61400-12-1:2005 procedure. See Document US.12.01.004 for further details.

COMMENTS

This sensor was calibrated at 0°.

Certificate number: 18.US1.05429

Tel 802.316.4368 · Fax 802.735.9106 · www.sohwind.com

CERTIFICATE FOR CALIBRATION OF SONIC ANEMOMETER

Certificate number: 18.US1.05430 Date of issue: October 26, 2018

Type: Vaisala Weather Transmitter, WXT536 Serial number: M4910193

Manufacturer: Vaisala, Oyj, Pl 26, FIN-00421 Helsinki, Finland

Client: Aercoustics Engineering Ltd., 1004 Middlegate RD, Suite 1100, S.Tower, Mississauga, ON L4Y 1M4, Canada

Anemometer received: October 24, 2018

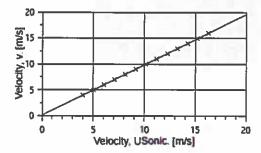
Anemometer calibrated: October 24, 2018

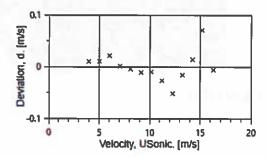
Calibrated by: MEJ

Procedure: MEASNET, IEC 61400-12-1:2017 Annex F

Ein Septel

Certificate prepared by: EJF Approved by: Calibration engineer, EJF


Calibration equation obtained: $v \text{ [m/s]} = 0.97306 \cdot \text{ f [m/s]} + 0.08615$


Standard uncertainty, slope: 0.00222 Standard uncertainty, offset: 0.27161 Covariance: $-0.0000472 \text{ (m/s)}^2\text{/m/s}$ Coefficient of correlation: $\rho = 0.999973$

Absolute maximum deviation: 0.071 m/s at 14.937 m/s

Barometric pressure: 1005.6 hPa Relative humidity: 29.3%

Succession	Velocity	Tempera	iture in	Wind velocity, v.	Anemometer Output, f.	Deviation, d.	Uncertainty u _c (k=2)	
	pressure, q. [Pa]	wind tunnel	d.p. box					
		[Pa]	[Pa]	[°C]	[°C]	[m/s]	[m/s]	[m/s]
2	9.24	22.6	28.0	3.956	3.9667	0.010	0.020	
4	14.66	22.7	28.0	4.982	5.0207	0.010	0.023	
6	21.10	22.7	28.0	5.978	6.0333	0.021	0.026	
8	28.68	22.7	28.0	6.970	7.0733	0.001	0.029	
10	37.56	22.7	28.0	7.976	8.1133	-0.005	0.033	
12	47.60	22.7	28.0	8.978	9.1500	-0.011	0.037	
13-last	58.55	22.7	28.0	9.958	10.1552	-0.010	0.041	
11	70.93	22.7	28.0	10.961	11.2033	-0.027	0.045	
9	84.77	22.7	28.0	11.983	12.2800	-0.052	0.049	
7	99.15	22.7	28.0	12.960	13.2467	-0.016	0.053	
5	115.08	22.6	28.0	13.963	14.2467	0.014	0.057	
3	131.71	22.6	28.0	14.937	15.1900	0.071	0.061	
1-first	149.90	22.5	28.1	15.934	16.2933	-0.006	0.065	

EQUIPMENT USED

Serial Number	Description				
NjordI	Wind tunnel, blockage factor = 1.0035				
2254	Control cup anemometer				
-	Mounting tube, D = 19 mm				
TT002	Summit Electronics, 1XPT100, 0-10V Output, wind tunnel temp.				
TP001	PR Electronics 5102, 0-10V Output, differential pressure box temp.				
DP005	Setra Model 239, 0-linWC, differential pressure transducer				
HY003	Dwyer RHP-2D20, 0-10V Output, humidity transmitter				
BP003	Setra M278, 0-5VDC Output, barometer				
PL8	Pitot tube				
XB002	Computer Board. 16 bit A/D data acquisition board				
9PRZRW1	PC dedicated to data acquisition				

Traceable calibrations of the equipment are carried out by external accredited institutions: Atlantic Scale, Essco Calibration Labs & Furness Controls. A real-time analysis module within the data acquisition software detects pulse frequency.

Photo of the wind tunnel setup. The cross-sectional area is 2.5m x 2.5m.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the IEC 61400-12-1;2005 procedure. See Document US,12.01.004 for further details.

COMMENTS

This sensor was calibrated at 90°.

Certificate number: 18.US1.05430

Compliant Calibration Certificate

Template Revision: Feb2018

Certificate Number:	5804565.1	OE Number:	21521268
Date Printed:	30-OCT-2018	Page:	1 of 14
Customer:	Aercoustics Engineering LTD (CA 1004 Middlegate Road Suite 1100 MISSISSAUGA, L4Y 0G1 CANADA		CALIBRATED SN/ID _1CAF718 DATE 30-OCT-2018 DUE 30-OCT-2018 rs com/calibration
Manufacturer:	National Instruments	Model:	NI 9234
Serial Number:	1CAF718		
Part Number:	195551C-01L	Description:	MODULE ASSY,NI 9234, 4 AI CONFIGURABLE
Calibration Date:	30-OCT-2018	Recommended Calibration Due:	30-OCT-2019
Procedure Name:	NI 9234	Verification Results:	As Found: Passed As Left: Passed
Procedure Version:	3.6.1.0	Calibration Executive Version:	3.5.2
Lab Technician:	Rachel McKinnon	Driver Info:	NI-DAQmx:17.1.0
Temperature:	23.0° C	Humidity:	44.7% RH

The data found in this certificate must be interpreted as:

As Found

The calibration data of the unit as received by National Instruments.

As Left

The calibration data of the unit when returned from National Instruments.

The As Found and As Left readings are identical for units not adjusted or repaired.

This calibration conforms to ANSI/NCSL Z540.1-1994 (R2002) requirements.

The TUR (Test Uncertainty Ratio) of this calibration is maintained at a ratio of 4:1 or greater, unless otherwise indicated in the measurements. A TUR determination is not possible for singled sided specification limits and therefore the absence of a value should not be interpreted as a TUR of 4:1 or greater, but rather undetermined. When provided, the expanded measurement uncertainty is calculated according to the Guide to the Expression of Uncertainty in Measurement (GUM) for a confidence level of approximately 95%. The uncertainty is calculated at time of calibration and does not include the object long-term stability and different environmental and operational conditions.

Results are reviewed to establish where any measurement results exceeded the manufacturer's specifications. Measured values greater than the Manufacturer's specification limits are marked as 'Failed', measured values within the Manufacturer's specifications are marked as 'Passed'.

This certificate applies exclusively to the item identified above and shall not be reproduced except in full, without National Instruments written authorization. Calibration certificates without signatures are not valid.

The Calibration Certificate can be viewed or downloaded online at www.ni.com/calibration/. To request a hard copy, contact Nt Customer Service at Tel:(800) 531-5066 or E-mail customer.service@Nl.com

Victor Peña

Technical Manager

Certificate Number: 5804565.1 Page: 2 of 14

Calibration Notes

Туре	Note	
Asset	Verification only was performed.	

Standards Used

Manufacturer	Model	Туре	Tracking Number	Calibration Due	Notes
Fluke	5700A/EP	Calibrator	3132	27-JAN-2019	
National Instruments	PXI-4461	Function generator	9520	20-AUG-2019	
National Instruments	PXI-4071	Digital multimeter	9837	24-AUG-2019	
National Instruments	PXI-4132	SMU	9170	03-MAY-2019	

The standards used in this calibration are traceable to NIST and/or other National Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measures (CIPM) mutual recognition agreement (MRA).

Calibration Results

As Found

Verify Acc	uracy							
Lower Range	Upper Range	Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
-5 V	5 V	0	4.00000 V	3.99520 V	4.00028 V	4.00480 V	Passed	
-5 V	5 V	0	0.00000 V	-0.00120 V	0.00009 V	0.00120 V	Passed	
-5 V	5 V	0	-4.00000 V	-4.00480 V	-4.00011 V	-3.99520 V	Passed	
-5 V	5 V	1	4.00000 V	3.99520 V	4.00011 V	4.00480 V	Passed	
-5 V	5 V	1	0.00000 V	-0.00120 V	-0.00009 V	0.00120 V	Passed	
-5 V	5 V	1	-4.00000 V	-4.00480 V	-4.00026 V	-3.99520 V	Passed	-
-5 V	5 V	2	4.00000 V	3.99520 V	4.00030 V	4.00480 V	Passed	
-5 V	5 V	2	0.00000 V	-0.00120 V	-0.00000 V	0.00120 V	Passed	
-5 V	5 V	2	-4.00000 V	-4.00480 V	-4.00029 V	-3.99520 V	Passed	
-5 V	5 V	3	4.00000 V	3.99520 V	4.00045 V	4.00480 V	Passed	
-5 V	5 V	3	0.00000 V	-0.00120 V	0.00023 V	0.00120 V	Passed	
-5 V	5 V	3	-4.00000 V	-4.00480 V	-3.99998 V	-3.99520 V	Passed	· · · · · · · · · · · · · · · · · · ·

3 of 14

Page:

National Instruments Calibration Services Austin Building A 11500 N MoPac Expwy AUSTIN, TX 78759-3504 USA Tel: (800) 531-5066

Verify Gain N	Verify Gain Matching											
Max Gain Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes				
0	10240	10240	4 V	-0.040 dB	-0,000 dB	0.040 dB	Passed	,				
1	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed					
2	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed	<u> </u>				
3	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed					

Verify Phase	Matching							
Max Phase Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	16384	1000 Hz	-0.085 Degrees	0.004 Degrees	0.085 Degrees	Passed	
1	51200	16384	1000 Hz	-0.085 Degrees	0.005 Degrees	0.085 Degrees	Passed	
2	51200	16384	1000 Hz	-0.085 Degrees	-0.006 Degrees	0.085 Degrees	Passed	
3	51200	16384	1000 Hz	-0.085 Degrees	0.006 Degrees	0.085 Degrees	Passed	
0	51200	16384	10000 Hz	-0.490 Degrees	0.036 Degrees	0.490 Degrees	Passed	
1	51200	16384	10000 Hz	-0.490 Degrees	0.054 Degrees	0.490 Degrees	Passed	
2	51200	16384	10000 Hz	-0.490 Degrees	-0.068 Degrees	0.490 Degrees	Passed	
3	51200	16384	10000 Hz	-0.490 Degrees	0.068 Degrees	0.490 Degrees	Passed	

Page:

6 of 14*

Verify Com	Verify Common Mode Rejection Ratio											
Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes				
0	51200	16384	1000 Hz	40.000 dB	51.710 dB	100.000 dB	Passed					
1	51200	16384	1000 Hz	40.000 dB	51.020 dB	100.000 dB	Passed					
2	51200	16384	1000 Hz	40.000 dB	51.377 dB	100.000 dB	Passed					
3	51200	16384	1000 Hz	40.000 dB	52.208 dB	100.000 dB	Passed	- 1				

Verify IEPE Current										
Channel	Rate	DMM Range	Test Value	Low Limit	Reading	High Limit	Status	Notes		
0	51200	0.01 A	2.000 mA	2.000 mA	2.073 mA	2.200 mA	Passed			
1	51200	0.01 A	2.000 mA	2.000 mA	2.078 mA	2.200 mA	Passed			
2	51200	0.01 A	2.000 mA	2.000 mA	2.075 mA	2.200 mA	Passed			
3	51200	0.01 A	2.000 mA	2.000 mA	2.066 mA	2.200 mA	Passed			

Page:

8 of 14"

Verify IEPE	Compliance	Voltage						
Channel	Rate	SMU Voltage Limit	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	24 V	2 mA	19.000 V	20.849 V	24.000 V	Passed	
1	51200	24 V	2 mA	19.000 V	20.847 V	24.000 V	Passed	
2	51200	24 V	2 mA	19.000 V	20.846 V	24.000 V	Passed	
3	51200	24 V	2 mA	19.000 V	20.851 V	24.000 V	Passed	

Page:

9 of 14

As Left

Verify Acc	uracy							
Lower Range	Upper Range	Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
-5 V	5 V	0	4.00000 V	3,99520 V	4.00028 V	4.00480 V	Passed	
-5 V	5 V	0	0.00000 V	-0.00120 V	0,00009 V	0.00120 V	Passed	
-5 V	5 V	0	-4.00000 V	-4.00480 V	-4.00011 V	-3.99520 V	Passed	
-5 V	5 V	1	4.00000 V	3.99520 V	4.00011 V	4.00480 V	Passed	
-5 V	5 V	1	0.00000 V	-0.00120 V	-0.00009 V	0.00120 V	Passed	
-5 V	5 V	1	-4.00000 V	-4.00480 V	-4.00026 V	-3.99520 V	Passed	
-5 V	5 V	2	4.00000 V	3.99520 V	4.00030 V	4.00480 V	Passed	
-5 V	5 V	2	0.00000 V	-0.00120 V	-0.00000 V	0.00120 V	Passed	
-5 V	5 V	2	-4.00000 V	-4.00480 V	-4.00029 V	-3.99520 V	Passed	
-5 V	5 V	3	4.00000 V	3.99520 V	4.00045 V	4.00480 V	Passed	
-5 V	5 V	3	0.00000 V	-0.00120 V	0.00023 V	0.00120 V	Passed	•
-5 V	5 V	3	-4.00000 V	-4.00480 V	-3.99998 V	-3.99520 V	Passed	

Page:

10 of 14

Verify Gain Matching											
Max Gain Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes			
0	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed	-			
1	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed				
2	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed				
3	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed	***			

Page:

11 of 14

As Left

Verify Phase	Matching	L Close verices in					
Max Phase Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status Notes
0	51200	16384	1000 Hz	-0.085 Degrees	0.004 Degrees	0.085 Degrees	Passed
1	51200	16384	1000 Hz	-0.085 Degrees	0.005 Degrees	0.085 Degrees	Passed
2	51200	16384	1000 Hz	-0.085 Degrees	-0.006 Degrees	0.085 Degrees	Passed
3	51200	16384	1000 Hz	-0.085 Degrees	0.006 Degrees	0.085 Degrees	Passed
0	51200	16384	10000 Hz	-0.490 Degrees	0.036 Degrees	0.490 Degrees	Passed
1	51200	16384	10000 Hz	-0.490 Degrees	0.054 Degrees	0.490 Degrees	Passed
2	51200	16384	10000 Hz	-0.490 Degrees	-0.068 Degrees	0.490 Degrees	Passed
3	51200	16384	10000 Hz	-0.490 Degrees	0.068 Degrees	0.490 Degrees	Passed

Verify Common Mode Rejection Ratio											
Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes	ř			
51200	16384	1000 Hz	40.000 dB	51.710 dB	100.000 dB	Passed					
51200	16384	1000 Hz	40.000 dB	51.020 dB	100.000 dB	Passed	***				
51200	16384	1000 Hz	40.000 dB	51.377 dB	100.000 dB	Passed					
51200	16384	1000 Hz	40.000 dB	52.208 dB	100.000 dB	Passed					
	Rate 51200 51200 51200	Rate Samples per Channel 51200 16384 51200 16384 51200 16384	Rate Samples per Channel Test Value 51200 16384 1000 Hz 51200 16384 1000 Hz 51200 16384 1000 Hz	Rate Samples per Channel Test Value Low Limit 51200 16384 1000 Hz 40,000 dB 51200 16384 1000 Hz 40,000 dB 51200 16384 1000 Hz 40,000 dB	Rate Samples per Channel Test Value Low Limit Reading 51200 16384 1000 Hz 40.000 dB 51.710 dB 51200 16384 1000 Hz 40.000 dB 51.020 dB 51200 16384 1000 Hz 40.000 dB 51.377 dB	Rate Samples per Channel Test Value Low Limit Reading High Limit 51200 16384 1000 Hz 40,000 dB 51,710 dB 100,000 dB 51200 16384 1000 Hz 40,000 dB 51,020 dB 100,000 dB 51200 16384 1000 Hz 40,000 dB 51,377 dB 100,000 dB	Rate Samples per Channel Test Value Low Limit Reading High Limit Status 51200 16384 1000 Hz 40.000 dB 51.710 dB 100.000 dB Passed 51200 16384 1000 Hz 40.000 dB 51.020 dB 100.000 dB Passed 51200 16384 1000 Hz 40.000 dB 51.377 dB 100.000 dB Passed	Rate Samples per Channel Test Value Low Limit Reading High Limit Status Notes 51200 16384 1000 Hz 40.000 dB 51.710 dB 100.000 dB Passed 51200 16384 1000 Hz 40.000 dB 51.020 dB 100.000 dB Passed 51200 16384 1000 Hz 40.000 dB 51.377 dB 100.000 dB Passed			

Page:

13 of 14

Verify IEPE Current										
Channel	Rate	DMM Range	Test Value	Low Limit	Reading	High Limit	Status	Notes		
0	51200	0.01 A	2.000 mA	2,000 mA	2.073 mA	2.200 mA	Passed			
1	51200	0.01 A	2.000 mA	2.000 mA	2.078 mA	2.200 mA	Passed			
2	51200	0.01 A	2.000 mA	2.000 mA	2.075 mA	2.200 mA	Passed			
3	51200	0.01 A	2.000 mA	2.000 mA	2.066 mA	2.200 mA	Passed			

Page:

14 of 14

Verify IEPE Compliance Voltage										
Channel	Rate	SMU Voltage Limit	Test Value	Low Limit	Reading	High Limit	Status	Notes		
0	51200	24 V	2 mA	19.000 V	20.849 V	24.000 V	Passed			
1	51200	24 V	2 mA	19.000 V	20.847 V	24.000 V	Passed			
2	51200	24 V	2 mA	19.000 V	20.846 V	24.000 V	Passed			
3	51200	24 V	2 mA	19.000 V	20.851 V	24.000 V	Passed			

Compliant Calibration Certificate

Certificate Number:	5427760.1	OE Number:	21294535
Date Printed:	02-JAN-2018	Page:	1 of 14
Customer:	Aercoustics Engineering LTD (C/	A)	
	1004 Middlegate Rd		
	No 1100 MISSISSAUGA, L4Y 1M4 CANADA		
Manufacturer:	National Instruments	Model:	NI 9234
Serial Number:	1AE459C		
Part Number:	195551B-01L	Description:	MODULE ASSY,NI 9234, 4 AI CONFIGURABLE
Calibration Date:	02-JAN-2018	Recommended Calibration Due:	02-JAN-2019
Procedure Name:	NI 9234	Verification Results:	As Found: Passed As Left: Passed
Procedure Version:	3,6.1.0	Calibration Executive Version:	4.1.1.0
Lab Technician:	Rachel McKinnon	Driver Info:	NI-DAQmx:16.1.0
Temperature:	23.0° C	Humidity:	39.2% RH

The data found in this certificate must be interpreted as:

As Found The calibration data of the unit as received by National Instruments.

As Left The calibration data of the unit when returned from National Instruments.

The As Found and As Left readings are identical for units not adjusted or repaired.

This calibration conforms to ANSI/NCSL Z540.1-1994 (R2002) requirements.

The TAR (Test Accuracy Ratio) of this calibration is maintained at a ratio of 4:1 or greater, unless otherwise indicated in the measurements. A TAR determination is not possible for singled sided specification limits and therefore the absence of a value should not be interpreted as a TAR of 4:1 or greater, but rather undetermined. When provided, the expanded measurement uncertainty is calculated according to the Guide to the Expression of Uncertainty in Measurement (GUM) for a confidence level of approximately 95%. The uncertainty is calculated at time of calibration and does not include the object long-term stability and different environmental and operational conditions.

Results are reviewed to establish where any measurement results exceeded the manufacturer's specifications. Measured values greater than the Manufacturer's specification limits are marked as 'Failed', measured values within the Manufacturer's specifications are marked as 'Passed'.

This certificate applies exclusively to the item identified above and shall not be reproduced except in full, without National Instruments written authorization. Calibration certificates without signatures are not valid.

The Calibration Certificate can be viewed or downloaded online at www.ni.com/calibration/. To request a hard copy, contact NI Customer Service at Tel:(800) 531-5066 or E-mail customer.service@Nl.com

DEKRA

ISO 9001:2008- Quality Management System (QMS) Certification
Applicable scope and other certifications can be found at ni.com/certifications

Victor Peña Technical Manager CALIBRATED
SNID 1AE459C
DATE 02-JAN-2018
DUE 02-JAN-2019
n com/cabbr abon

this feet

Certificate Number: 5427760.1 Page: 2 of 14

Calibration Notes

Туре	Note	
Asset	Verification and adjustment were performed.	

Standards Used

Manufacturer	Model	Туре	Tracking Number	Calibration Due	Notes
FLUKE	5700A/EP	Calibrator	2556	04-FEB-2018	
National Instruments	PXI-4461	Function generator	9520	01-AUG-2018	
National Instruments	PXI-4071	Digital multimeter	8241	12-DEC-2018	
National Instruments	PXI-4132	SMU	9166	01-FEB-2018	

The standards used in this calibration are traceable to NIST and/or other National Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measures (CIPM) mutual recognition agreement (MRA).

Calibration Results

As	Foi	ınd

Verify Acc	uracy							
Lower Range	Upper Range	Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
-5 V	5 V	0	4.00000 V	3.99520 V	3.99983 V	4.00480 V	Passed	
-5 V	5 V	0	0.00000 V	-0.00120 V	-0.00018 V	0.00120 V	Passed	
-5 V	5 V	0	-4.00000 V	-4.00480 V	-4.00019 V	-3.99520 V	Passed	
-5 V	5 V	1	4.00000 V	3.99520 V	3.99949 V	4.00480 V	Passed	
-5 V	5 V	1	0.00000 V	-0.00120 V	-0.00029 V	0.00120 V	Passed	
-5 V	5 V	1	-4.00000 V	-4.00480 V	-4,00005 V	-3.99520 V	Passed	
-5 V	5 V	2	4.00000 V	3,99520 V	3.99976 V	4.00480 V	Passed	
-5 V	5 V	2	0.00000 V	-0.00120 V	-0.00001 V	0.00120 V	Passed	
-5 V	5 V	2	-4.00000 V	-4.00480 V	-3.99979 V	-3.99520 V	Passed	
-5 V	5 V	3	4.00000 V	3.99520 V	3.99979 V	4.00480 V	Passed	
-5 V	5 V	3	0.00000 V	-0.00120 V	-0.00008 V	0.00120 V	Passed	
-5 V	5 V	3	-4.00000 V	-4.00480 V	-3.99993 V	-3.99520 V	Passed	

Certificate Number: 5427760.1 Page: 4 of 14

Verify Gain Matching											
Max Gain Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes			
0	10240	10240	4 V	-0.040 dB	0.001 dB	0.040 dB	Passed				
1	10240	10240	4 V	-0.040 dB	-0.001 dB	0.040 dB	Passed				
2	10240	10240	4 V	-0.040 dB	-0.001 dB	0.040 dB	Passed				
3	10240	10240	4 V	-0.040 dB	-0.000 dB	0,040 dB	Passed				

Verify Phase	Verify Phase Matching										
Max Phase Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status Notes				
0	51200	16384	1000 Hz	-0.085 Degrees	-0.012 Degrees	0.085 Degrees	Passed				
1	51200	16384	1000 Hz	-0.085 Degrees	0.012 Degrees	0.085 Degrees	Passed				
2	51200	16384	1000 Hz	-0.085 Degrees	-0.007 Degrees	0.085 Degrees	Passed				
3	51200	16384	1000 Hz	-0.085 Degrees	-0.008 Degrees	0.085 Degrees	Passed				
0	51200	16384	10000 Hz	-0.490 Degrees	-0.112 Degrees	0.490 Degrees	Passed				
1	51200	16384	10000 Hz	-0.490 Degrees	0.112 Degrees	0.490 Degrees	Passed				
2	51200	16384	10000 Hz	-0.490 Degrees	-0.059 Degrees	0.490 Degrees	Passed				
3	51200	16384	10000 Hz	-0.490 Degrees	-0.064 Degrees	0.490 Degrees	Passed				

Page:

6 of 14

Verify Common Mode Rejection Ratio											
Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes			
0	51200	16384	1000 Hz	40.000 dB	53.691 dB	100.000 dB	Passed				
1	51200	16384	1000 Hz	40.000 dB	51.418 dB	100.000 dB	Passed				
2	51200	16384	1000 Hz	40.000 dB	55.070 dB	100.000 dB	Passed				
3	51200	16384	1000 Hz	40.000 dB	51.369 dB	100.000 dB	Passed				

Page:

7 of 14

Verify IEPE								
Channel	Rate	DMM Range	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	0.01 A	2.000 mA	2.000 mA	2.091 mA	2.200 mA	Passed	
1	51200	0.01 A	2.000 mA	2.000 mA	2.078 mA	2.200 mA	Passed	
2	51200	0.01 A	2.000 mA	2.000 mA	2.089 mA	2.200 mA	Passed	
3	51200	0.01 A	2.000 mA	2,000 mA	2.083 mA	2.200 mA	Passed	

Certificate Number: 5427760.1 Page: 8 of 14

Verify IEPE Compliance Voltage									
Channel	Rate	SMU Voltage Limit	Test Value	Low Limit	Reading	High Limit	Status	Notes	
0	51200	24 V	2 mA	19.000 V	20.771 V	24,000 V	Passed		
1	51200	24 V	2 mA	19.000 V	20.777 V	24.000 V	Passed		
2	51200	24 V	2 mA	19.000 V	20.770 V	24.000 V	Passed		
3	51200	24 V	2 mA	19.000 V	20.773 V	24.000 V	Passed		

Verify Accuracy									
	Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes		
	0	4.00000 V	3.99520 V	3.99999 V	4.00480 V	Passed			
	0	0.00000 V	-0.00120 V	0.00000 V	0.00120 V	Passed			
	0	-4.00000 V	-4.00480 V	-3.99999 V	-3.99520 V	Passed			
	1	4.00000 V	3.99520 V	4.00000 V	4.00480 V	Passed			
	1	0.00000 V	-0.00120 V	-0.00001 V	0.00120 V	Passed			
	1	-4.00000 V	-4.00480 V	-4.00000 V	-3.99520 V	Passed			
	2	4.00000 V	3.99520 V	4.00002 V	4.00480 V	Passed			
	2	0.00000 V	-0.00120 V	0.00000 V	0.00120 V	Passed			
	2	-4.00000 V	-4.00480 V	-4.00001 V	-3.99520 V	Passed			
	3	4.00000 V	3.99520 V	4.00001 V	4.00480 V	Passed			
	3	0.00000 V	-0.00120 V	-0.00000 V	0.00120 V	Passed			
	3	-4.00000 V	-4.00480 V	-3.99999 V	-3.99520 V	Passed			
	3	0.00000 V	-0.00120 V	-0.00000 V	0.00120 V		Passed		

Certificate Number: 5427760.1 Page: 10 of 14

Verify Gain Matching									
Max Gain Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes	
0	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed		
1	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed		
2	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed		
3	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed		

Page:

11 of 14

As Left

Verify Phase	Matching							
Max Phase Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	16384	1000 Hz	-0.085 Degrees	-0.012 Degrees	0.085 Degrees	Passed	_=
1	51200	16384	1000 Hz	-0.085 Degrees	0.012 Degrees	0.085 Degrees	Passed	
2	51200	16384	1000 Hz	-0.085 Degrees	-0.006 Degrees	0.085 Degrees	Passed	
3	51200	16384	1000 Hz	-0.085 Degrees	-0.008 Degrees	0.085 Degrees	Passed	
0	51200	16384	10000 Hz	-0.490 Degrees	-0.112 Degrees	0.490 Degrees	Passed	
1	51200	16384	10000 Hz	-0.490 Degrees	0.112 Degrees	0.490 Degrees	Passed	
2	51200	16384	10000 Hz	-0.490 Degrees	-0.059 Degrees	0.490 Degrees	Passed	
3	51200	16384	10000 Hz	-0.490 Degrees	-0.064 Degrees	0.490 Degrees	Passed	

Page:

12 of 14

Verify Common Mode Rejection Ratio									
Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes	
0	51200	16384	1000 Hz	40,000 dB	52.737 dB	100.000 dB	Passed		
1	51200	16384	1000 Hz	40.000 dB	50.733 dB	100,000 dB	Passed		
2	51200	16384	1000 Hz	40.000 dB	54.465 dB	100.000 dB	Passed		
3	51200	16384	1000 Hz	40.000 dB	54.586 dB	100.000 dB	Passed		

Page: 13 of 14

Verify IEPE Current								
Channel	Rate	DMM Range	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	0.01 A	2.000 mA	2.000 mA	2.081 mA	2.200 mA	Passed	
1 =	51200	0.01 A	2.000 mA	2.000 mA	2.078 mA	2.200 mA	Passed	
2	51200	0.01 A	2.000 mA	2.000 mA	2.089 mA	2.200 mA	Passed	
3	51200	0.01 A	2.000 mA	2.000 mA	2.083 mA	2.200 mA	Passed	

Certificate Number: 5427760.1 Page: 14 of 14

Verify IEPE Compliance Voltage									
Channel	Rate	SMU Voltage Limit	Test Value	Low Limit	Reading	High Limit	Status	Notes	
0	51200	24 V	2 mA	19.000 V	20.770 V	24,000 V	Passed		
1	51200	24 V	2 mA	19.000 V	20.774 V	24.000 V	Passed		
2	51200	24 V	2 mA	19.000 V	20.769 V	24.000 V	Passed		
3	51200	24 V	2 mA	19.000 V	20.771 V	24.000 V	Passed		

CERTIFICATE of CALIBRATION

Make: PCB Piezotronics

Reference #: 153406

Model: 378B02

Customer: Aercoustics Engineering Ltd

Mississauga, ON

Descr.: Microphone System 1/2" Free Field

Serial #: 121695

P. Order:

2018.07.18C

Asset #: 00471

Cal. status: Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer.

Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.

Our calibration system complies with the requirements of ISO-9001-2008 and is registered under certificate CA96/269, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated: Jul 25, 2018

By: Officer

Cal. Due: Jul

Jul 25, 2020

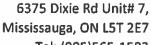
Petro Onasko

Temperature : 23 °C \pm 2 °C Relative Humidity : 30% to 70%

Standards used: J-216 J-325 J-333 J-420 J-512

Navair Technologies

REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST


6375 Dixie Rd. Mississauga, ON, L5T 2E7

Phone: 905 565 1584 Fax: 905 565 8325

http://www.navair.com e-Mail: service @ navair.com

The copyright of this document is the property of Navair Technologies

Any reproduction other than in full requires written approval!

Tel: (905)565-1583 Fax: (905)565-8325

Form:378B02 Approved by: JR Feb-16 Ver 1.0
--

Calibration Report for Certificate:

153406

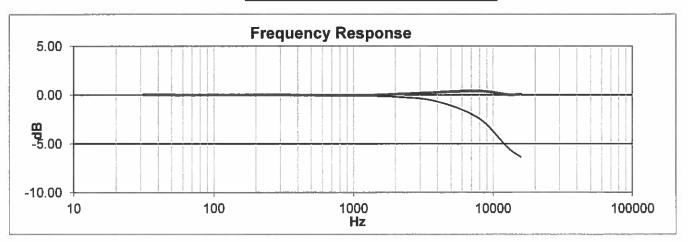
Make		Model	Serial	Asset
PCB Piezotronics	 	378B02	121695	00471
PCB Piezotronics		377B02	153614	

Sensitivity at 250Hz

Specs Nom	Unit	Min	Reading	Max	In/Out
50	mV/Pa	39.72	49.89	62.94	l In
-26.02	dB re 1V/Pa	-28.02	-26.04	-24.02	In
0	dB re 50mV/Pa	-2	-0.02	2	In

Ambient Conditions: Static Pressure 99.1 kPa

Temperature


24.3°C

Rel.Humidity

57.0%

Frequency response

			_
	Lower	Upper	
Freq	Pressure	Free Field	
Hz	dB	dB	
31.5	0.02	0.03	
63.1	0.00	0.01]
125.9	0.00	0.00	
251.3	0.00	0.00	ref
502.5	-0.02	-0.02	
1005.1	-0.07	-0.05	
1978.7	-0.20	0.06	
3957.5	-0.66	0.25	
7914.9	-2.39	0.40	
12663	-5.35	0.03]
15830	-6.36	0.08]

CERTIFICATE of CALIBRATION

Make: PCB Piezotronics

Reference #: 153586

Model: 480E09

Customer:

Aercoustics Engineering Ltd

Mississauga, ON

Descr.: Conditioning Amplifier

Serial #: 00033370

P. Order:

2018.08.03C

Asset #: 00446

Cal. status: Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer.

Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.

Our calibration system complies with the requirements of ISO-9001-2008 and is registered under certificate CA96/269, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated: Aug 09, 2018

By: Theour

Cal. Due: Aug 09, 2020

Petro Onasko

Temperature : 23 °C \pm 2 °C Relative Humidity : 30% to 70%

Standards used: J-255 J-367 J-512

Navair Technologies

REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST

6375 Dixie Rd. Mississauga, ON, L5T 2E7

Phone: 905 565 1584

Fax: 905 565 8325

http://www.navair.com e-Mail: service @ navair.com

The copyright of this document is the property of Navair Technologies Any reproduction other than in full requires written approval!

6375 Dixie Rd Unit# 7, Mississauga, ON L5T 2E7

Tel: (905)565-1583 Fax: (905)565-8325

Form: 480E09	Approved by: JR	Jun-18	ver 1.2
--------------	-----------------	--------	---------

Calibration Report for Certificate :

153586

Make	Model	Serial	Asset
PCB Piezotronics	480E09	00033370	00446

Test	Min	Reading	May	To /Out
1525	13711	reauting	Max	111/046

Gain accuracy at 1kHz

Gain Set	Input		V		
x1	1.000 V	0.9800	0.9999	1.0200	In
x10	0.100 V	0.9800	1.0005	1.0200	In
x100	0.010 V	0.9800	0.9992	1.0200	In

Gain Flatness

X1

I/P	1.00063			*		
10 Hz	1.000 V	_	5.0	-0.1	5.0	In
10 kHz	1.000 V	-	5.0	0.0	5.0	In
50 kHz	1.000 V	-	5.0	0.1	5.0	In
100 kHz	1.000 V	-	5.0	0.2	5.0	In

X10					
I/P			8		
10 Hz	0.100 V	-5.0	0.0	5.0	In
10 kHz	0.100 V	-5.0	0.0	5.0	In
50 kHz	0.100 V	-5.0	-0.3	5.0	In
100 640	0.100.0	-5.0	-1 0	5.0	To

X100 I/P 용 10 Hz 0.010 V -5.0 0.1 5.0 In 10 kHz 0.010 V -0.2 5.0 -5.0 In 0.010 V -5.0 -4.6 50 kHz 5.0

Compliant Calibration Certificate

Template Revision:

4.5.0.0

45.5% RH

NI-DAQmx:17.1.0

SNID __ ICAF75B

Certificate Number:	5741060.1	OE Number:	21477943	DATE 05-SEP-201
Date Printed:	05-SEP-2018	Page:	1 of 14	ru com/calibration
Customer:	Aercoustics Engineering LT 1004 Middlegate Road Suite 1100 MISSISSAUGA, L4Y 0G1 CANADA	D (CA)		
Manufacturer:	National Instruments	Model:	NI 9234	
Serial Number:	1CAF75B			
Part Number:	195551C-01L	Description:	MODULE ASSY,NI 9234 CONFIGURABLE	, 4 Al
Calibration Date:	05-SEP-2018	Recommended Calibration Due:	05-SEP-2019	UA - 52
Procedure Name:	NI 9234	Verification Results:	As Found: Passed As Left: Passed	

Driver Info:

Humidity:

Calibration Executive Version:

The data found in this certificate must be interpreted as:

3.6.1.0

23.0° C

Justin Rees

Procedure Version:

Lab Technician:

Temperature:

As Found The calibration data of the unit as received by National Instruments. As Left The calibration data of the unit when returned from National Instruments.

The As Found and As Left readings are identical for units not adjusted or repaired.

This calibration conforms to ANSI/NCSL Z540.1-1994 (R2002) requirements.

The TUR (Test Uncertainty Ratio) of this calibration is maintained at a ratio of 4:1 or greater, unless otherwise indicated in the measurements. A TUR determination is not possible for singled sided specification limits and therefore the absence of a value should not be interpreted as a TUR of 4:1 or greater, but rather undetermined. When provided, the expanded measurement uncertainty is calculated according to the Guide to the Expression of Uncertainty in Measurement (GUM) for a confidence level of approximately 95%. The uncertainty is calculated at time of calibration and does not include the object long-term stability and different environmental and operational conditions.

Results are reviewed to establish where any measurement results exceeded the manufacturer's specifications. Measured values greater than the Manufacturer's specification limits are marked as 'Failed', measured values within the Manufacturer's specifications are marked as 'Passed'.

This certificate applies exclusively to the item identified above and shall not be reproduced except in full, without National Instruments written authorization. Calibration certificates without signatures are not valid.

The Calibration Certificate can be viewed or downloaded online at www.ni.com/calibration/. To request a hard copy, contact NI Customer Service at Tel:(800) 531-5066 or E-mail customer.service@Nl.com

Victor Peña **Technical Manager**

Certificate Number: 5741060.1 Page: 2 of 14

Calibration Notes

		 100
Туре	Note	100000
Asset	Verification only was performed.	

Standards Used

Manufacturer	Model	Туре	Tracking Number	Calibration Due	Notes
FLUKE	5700A	Calibrator	3020	03-OCT-2018	
National Instruments	PXI-4461	Function generator	9383	25-APR-2019	
National Instruments	PXI-4071	Digital multimeter	10513	14-MAY-2019	
National Instruments	PXI-4132	SMU	9172	23-OCT-2018	

The standards used in this calibration are traceable to NIST and/or other National Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measures (CIPM) mutual recognition agreement (MRA).

Certificate Number: 5741060.1

Page:

3 of 14

Calibration Results

As Found

-5 V

5 V

3

-4.00000 V

Verify Acc	uracy			100				
Lower Range	Upper Range	Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
-5 V	5 V	0	4.00000 V	3.99520 V	3.99990 V	4.00480 V	Passed	
-5 V	5 V	0	0.00000 V	-0.00120 V	0.00011 V	0.00120 V	Passed	
-5 V	5 V	0	-4.00000 V	-4.00480 V	-3.99969 V	-3.99520 V	Passed	
-5 V	5 V	1	4.00000 V	3.99520 V	3.99998 V	4.00480 V	Passed	
-5 V	5 V	1	0.00000 V	-0.00120 V	-0.00007 V	0.00120 V	Passed	
-5 V	5 V	1	-4.00000 V	-4.00480 V	-4.00010 V	-3.99520 V	Passed	
-5 V	5 V	2	4.00000 V	3.99520 V	4.00030 V	4.00480 V	Passed	
-5 V	5 V	2	0.00000 V	-0.00120 V	0.00003 V	0.00120 V	Passed	
-5 V	5 V	2	-4.00000 V	-4.00480 V	-4.00022 V	-3.99520 V	Passed	
-5 V	5 V	3	4.00000 V	3.99520 V	4.00004 V	4.00480 V	Passed	
-5 V	5 V	3	0.00000 V	-0.00120 V	-0.00004 V	0.00120 V	Passed	

-4.00480 V

-4.00011 V

-3.99520 V

Passed

National Instruments Calibration Services Austin Building A 11500 N MoPac Expwy AUSTIN, TX 78759-3504 USA Tel: (800) 531-5066

Verify Gain Matching									
Max Gain Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes	
0	10240	10240	4 V	-0.040 dB	-0.001 dB	0.040 dB	Passed		
1	10240	10240	4 V	-0.040 dB	0.001 dB	0.040 dB	Passed		
2	10240	10240	4 V	-0.040 dB	0.001 dB	0.040 dB	Passed		
3	10240	10240	4 V	-0.040 dB	0.001 dB	0.040 dB	Passed	VIV. ALTO	

As Found

Verify Phase	Matching							
Max Phase Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	16384	1000 Hz	-0.085 Degrees	-0.013 Degrees	0.085 Degrees	Passed	
1	51200	16384	1000 Hz	-0.085 Degrees	0.013 Degrees	0.085 Degrees	Passed	
2 – –	51200	16384	1000 Hz	-0.085 Degrees	-0.011 Degrees	0.085 Degrees	Passed	
3	51200	16384	1000 Hz	-0.085 Degrees	-0.007 Degrees	0.085 Degrees	Passed	
0	51200	16384	10000 Hz	-0.490 Degrees	-0.104 Degrees	0.490 Degrees	Passed	
1	51200	16384	10000 Hz	-0.490 Degrees	0.104 Degrees	0.490 Degrees	Passed	¢
2	51200	16384	10000 Hz	-0.490 Degrees	-0.095 Degrees	0.490 Degrees	Passed	
3	51200	16384	10000 Hz	-0.490 Degrees	-0.055 Degrees	0.490 Degrees	Passed	
		<u> </u>		-0.490	-0.055	0.490		

Page:

6 of 14

As Found

Verify Common Mode Rejection Ratio								
Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes	
51200	16384	1000 Hz	40.000 dB	75.580 dB	100.000 dB	Passed		
51200	16384	1000 Hz	40.000 dB	73.473 dB	100.000 dB	Passed		
51200	16384	1000 Hz	40,000 dB	75.504 dB	100.000 dB	Passed		
51200	16384	1000 Hz	40.000 dB	75.161 dB	100.000 dB	Passed		
	Fate 51200 51200 51200	Rate Samples per Channel 51200 16384 51200 16384 51200 16384	Rate Samples per Channel Test Value 51200 16384 1000 Hz 51200 16384 1000 Hz 51200 16384 1000 Hz	Rate Samples per Channel Test Value Low Limit 51200 16384 1000 Hz 40.000 dB 51200 16384 1000 Hz 40.000 dB 51200 16384 1000 Hz 40.000 dB	Rate Samples per Channel Test Value Low Limit Reading 51200 16384 1000 Hz 40.000 dB 75.580 dB 51200 16384 1000 Hz 40.000 dB 73.473 dB 51200 16384 1000 Hz 40.000 dB 75.504 dB	Rate Samples per Channel Test Value Low Limit Reading High Limit 51200 16384 1000 Hz 40.000 dB 75.580 dB 100.000 dB 51200 16384 1000 Hz 40.000 dB 73.473 dB 100.000 dB 51200 16384 1000 Hz 40.000 dB 75.504 dB 100.000 dB	Rate Samples per Channel Test Value Low Limit Reading High Limit Status 51200 16384 1000 Hz 40.000 dB 75.580 dB 100.000 dB Passed 51200 16384 1000 Hz 40.000 dB 73.473 dB 100.000 dB Passed 51200 16384 1000 Hz 40.000 dB 75.504 dB 100.000 dB Passed	

Page: 7 of 14

As Found

Verify IEPE	Verify IEPE Current								
Channel	Rate	DMM Range	Test Value	Low Limit	Reading	High Limit	Status	Notes	
0	51200	0.01 A	2.000 mA	2.000 mA	2.076 mA	2.200 mA	Passed		
1	51200	0.01 A	2.000 mA	2.000 mA	2.068 mA	2.200 mA	Passed		
2	51200	0.01 A	2.000 mA	2.000 mA	2.075 mA	2.200 mA	Passed		
3	51200	0.01 A	2.000 mA	2.000 mA	2.070 mA	2.200 mA	Passed		

Certificate Number: 5741060.1 Page: 8 of 14

As Found

3

51200

24 V

Verify IEPE Compliance Voltage								
Channel	Rate	SMU Voltage Limit	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	24 V	2 mA	19.000 V	20.788 V	24.000 V	Passed	
1	51200	24 V	2 mA	19.000 V	20.793 V	24.000 V	Passed	
2	51200	24 V	2 mA	19.000 V	20.791 V	24.000 V	Passed	

19.000 V

20,790 V

2 mA

Passed

24.000 V

Verify Acc	uracy							
Lower Range	Upper Range	Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
-5 V	5 V	0	4.00000 V	3.99520 V	3.99990 V	4.00480 V	Passed	
-5 V	5 V	0	0.00000 V	-0.00120 V	0.00011 V	0.00120 V	Passed	
-5 V	5 V	0	-4.00000 V	-4.00480 V	-3.99969 V	-3.99520 V	Passed	
-5 V	5 V	1	4.00000 V	3.99520 V	3.99998 V	4.00480 V	Passed	
-5 V	5 V	1	0.00000 V	-0.00120 V	-0.00007 V	0.00120 V	Passed	
-5 V	5 V	1	-4.00000 V	-4.00480 V	-4.00010 V	-3.99520 V	Passed	
-5 V	5 V	2	4.00000 V	3.99520 V	4.00030 V	4.00480 V	Passed	
-5 V	5 V	2	0.00000 V	-0.00120 V	0.00003 V	0.00120 V	Passed	
-5 V	5 V	2	-4.00000 V	-4.00480 V	-4.00022 V	-3.99520 V	Passed	
-5 V	5 V	3	4.00000 V	3.99520 V	4.00004 V	4.00480 V	Passed	
-5 V	5 V	3	0.00000 V	-0.00120 V	-0.00004 V	0.00120 V	Passed	
-5 V	5 V	3	-4.00000 V	-4.00480 V	-4.00011 V	-3.99520 V	Passed	
								

Page:

10 of 14

Verify Gain N	flatching 1							
Max Gain Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	10240	10240	4 V	-0.040 dB	-0.001 dB	0.040 dB	Passed	
1	10240	10240	4 V	-0.040 dB	0.001 dB	0.040 dB	Passed	
2	10240	10240	4 V	-0.040 dB	0.001 dB	0.040 dB	Passed	
3	10240	10240	4 V	-0.040 dB	0.001 dB	0.040 dB	Passed	

Certificate Number: 5741060.1 Page: 11 of 14

Verify Phase Matching									
Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes		
51200	16384	1000 Hz	-0.085 Degrees	-0.013 Degrees	0.085 Degrees	Passed			
51200	16384	1000 Hz	-0.085 Degrees	0.013 Degrees	0.085 Degrees	Passed	k. "		
51200	16384	1000 Hz	-0.085 Degrees	-0.011 Degrees	0.085 Degrees	Passed			
51200	16384	1000 Hz	-0.085 Degrees	-0.007 Degrees	0.085 Degrees	Passed			
51200	16384	10000 Hz	-0.490 Degrees	-0.104 Degrees	0.490 Degrees	Passed			
51200	16384	10000 Hz	-0.490 Degrees	0.104 Degrees	0.490 Degrees	Passed			
51200	16384	10000 Hz	-0.490 Degrees	-0.095 Degrees	0.490 Degrees	Passed			
51200	16384	10000 Hz	-0.490 Degrees	-0.055 Degrees	0.490 Degrees	Passed			
	Fate 51200 51200 51200 51200 51200 51200 51200	Rate Samples per Channel 51200 16384 51200 16384 51200 16384 51200 16384 51200 16384 51200 16384 51200 16384 51200 16384 51200 16384	Rate Samples per Channel Test Value 51200 16384 1000 Hz 51200 16384 1000 Hz 51200 16384 1000 Hz 51200 16384 10000 Hz	Rate Samples per Channel Test Value Low Limit 51200 16384 1000 Hz -0.085 Degrees 51200 16384 10000 Hz -0.490 Degrees	Rate Samples per Channel Test Value Low Limit Reading 51200 16384 1000 Hz -0.085 Degrees -0.013 Degrees 51200 16384 1000 Hz -0.085 Degrees 0.013 Degrees 51200 16384 1000 Hz -0.085 Degrees -0.011 Degrees 51200 16384 1000 Hz -0.085 Degrees -0.007 Degrees 51200 16384 10000 Hz -0.490 Degrees -0.104 Degrees 51200 16384 10000 Hz -0.490 Degrees 0.104 Degrees 51200 16384 10000 Hz -0.490 Degrees -0.095 Degrees 51200 16384 10000 Hz -0.490 Degrees -0.095 Degrees	Rate Samples per Channel Test Value Low Limit Reading High Limit 51200 16384 1000 Hz -0.085 Degrees -0.013 Degrees 0.085 Degrees 51200 16384 1000 Hz -0.085 Degrees 0.013 Degrees 0.085 Degrees 51200 16384 1000 Hz -0.085 Degrees -0.011 Degrees 0.085 Degrees 51200 16384 1000 Hz -0.085 Degrees -0.007 Degrees 0.085 Degrees 51200 16384 10000 Hz -0.490 Degrees 0.104 Degrees 0.490 Degrees 51200 16384 10000 Hz -0.490 Degrees 0.104 Degrees 0.490 Degrees 51200 16384 10000 Hz -0.490 Degrees 0.095 Degrees 0.490 Degrees 51200 16384 10000 Hz -0.490 Degrees -0.095 Degrees 0.490 Degrees	Rate Samples per Channel Test Value Low Limit Reading High Limit Status 51200 16384 1000 Hz -0.085 Degrees -0.013 Degrees 0.085 Degrees Passed 51200 16384 1000 Hz -0.085 Degrees 0.013 Degrees 0.085 Degrees Passed 51200 16384 1000 Hz -0.085 Degrees -0.011 Degrees 0.085 Degrees Passed 51200 16384 1000 Hz -0.085 Degrees -0.007 Degrees 0.085 Degrees Passed 51200 16384 10000 Hz -0.490 Degrees 0.104 Degrees 0.490 Degrees Passed 51200 16384 10000 Hz -0.490 Degrees 0.095 Degrees 0.490 Degrees Passed 51200 16384 10000 Hz -0.490 Degrees 0.095 Degrees 0.490 Degrees Passed 51200 16384 10000 Hz -0.490 Degrees 0.055 0.490 Degrees 0.490 Degrees		

Page:

12 of 14

Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	16384	1000 Hz	40.000 dB	75,580 dB	100,000 dB	Passed	
1	51200	16384	1000 Hz	40.000 dB	73.473 dB	100.000 dB	Passed	
2	51200	16384	1000 Hz	40.000 dB	75.504 dB	100.000 dB	Passed	
3	51200	16384	1000 Hz	40.000 dB	75.161 dB	100.000 dB	Passed	

Page:

13 of 14

Verify IEPE	Current							
Channel	Rate	DMM Range	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	0.01 A	2.000 mA	2.000 mA	2.076 mA	2.200 mA	Passed	-
1	51200	0.01 A	2.000 mA	2.000 mA	2.068 mA	2.200 mA	Passed	
2	51200	0.01 A	2.000 mA	2.000 mA	2.075 mA	2.200 mA	Passed	
3	51200	0.01 A	2.000 mA	2.000 mA	2.070 mA	2.200 mA	Passed	
						·		

Certificate Number: 5741060.1 Page: 14 of 14

Channel	Rate	SMU Voltage Limit	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	24 V	2 mA	19.000 V	20.788 V	24.000 V	Passed	
1 =	51200	24 V	2 mA	19.000 V	20.793 V	24.000 V	Passed	
2	51200	24 V	2 mA	19.000 V	20.791 V	24.000 V	Passed	
3	51200	24 V	2 mA	19.000 V	20,790 V	24.000 V	Passed	

Tel 802.316.4368 · Fax 802.735.9106 · www.sohwind.com

CERTIFICATE FOR CALIBRATION OF SONIC ANEMOMETER

Certificate number: 18.US1.05008 Date of issue: September 28, 2018

Type: Vaisala Weather Transmitter, WXT520 Serial number: K0630016

Manufacturer: Vaisala, Oyj, Pl 26, FIN-00421 Helsinki, Finland

Client: Aercoustics Engineering Ltd., 1004 Middlegate RD, Suite 1100, S.Tower, Mississauga, ON L4Y 1M4, Canada

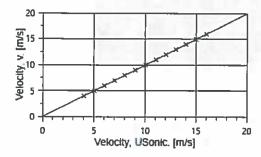
Anemometer received: September 25, 2018

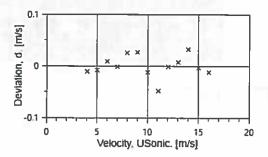
Calibrated by: MEJ

Anemometer calibrated: September 27, 2018

Procedure: MEASNET, IEC 61400-12-1:2017 Annex F

Certificate prepared by: EJF Approved by: Calibration engineer, EJF


Calibration equation obtained: $v \text{ [m/s]} = 0.99600 \cdot f \text{ [m/s]} + -0.01530$


Standard uncertainty, slope: 0.00163Standard uncertainty, offset: -1.13705Covariance: -0.0000265 (m/s) 2 /m/sCoefficient of correlation: $\rho = 0.999985$

Absolute maximum deviation: -0.048 m/s at 10.969 m/s

Barometric pressure: 1006.5 hPa Relative humidity: 49.0%

					•		
Succession	Velocity	Tempera	ture in	Wind	Anemometer	Deviation,	Uncertainty
	pressure, q.	wind tunnel	d.p. box	velocity, v.	Output, f.	d.	u _c (k=2)
	[Pa]	[°C]	[°C]	[m/s]	[m/s]	[m/s]	[m/s]
2	9.23	25.6	26.7	3.978	4.0200	-0.011	0.020
4	14.47	25.7	26.7	4.981	5.0241	-0.008	0.023
6	20.81	25.7	26.7	5.973	6.0033	0.009	0.026
8	28.35	25.7	26.7	6.972	7.0167	-0.002	0.029
10	37.09	25.7	26.7	7.974	7.9967	0.025	0.033
12	47.19	25.7	26.7	8.995	9.0200	0.026	0.037
13-last	57.82	25.7	26.7	9.956	10.0241	-0.012	0.041
П	70.17	25.7	26.7	10.969	11.0767	-0.048	0.045
9	83.56	25.7	26.7	11.970	12.0350	-0.001	0.049
7	97.94	25.7	26.7	12.960	13.0200	0.007	0.053
5	113.70	25.7	26.7	13.964	14.0033	0.032	0.057
3	129.99	25.6	26.7	14.931	15.0100	-0.004	0.061
1-first	148.17	25.6	26.7	15.941	16.0333	-0.012	0.065

in Jefle

EQUIPMENT USED

Serial Number	Description
Njord1	Wind tunnel, blockage factor = 1,0035
2254	Control cup anemometer
•	Mounting tube, $D = 19 \text{ mm}$
TT002	Summit Electronics, 1XPT100, 0-10V Output, wind tunnel temp.
TP001	PR Electronics 5102, 0-10V Output, differential pressure box temp.
DP005	Setra Model 239, 0-1inWC, differential pressure transducer
HY003	Dwyer RHP-2D20, 0-10V Output, humidity transmitter
BP003	Setra M278, 0-5VDC Output, barometer
PL8	Pitot tube
XB002	Computer Board. 16 bit A/D data acquisition board
9PRZRW1	PC dedicated to data acquisition

Traceable calibrations of the equipment are carried out by external accredited institutions. Atlantic Scale, Essco Calibration Labs & Furness Controls. A real-time analysis module within the data acquisition software detects pulse frequency.

Photo of the wind tunnel setup. The cross-sectional area is 2.5m x 2.5m.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the IEC 61400-12-1:2005 procedure. See Document US.12.01.004 for further details.

COMMENTS

This sensor was calibrated at 0°.

Certificate number: 18.US1.05008

Tel 802.316.4368 · Fax 802.735.9106 · www.sohwind.com

CERTIFICATE FOR CALIBRATION OF SONIC ANEMOMETER

Certificate number: 18.US1.05009 Date of issue: September 28, 2018 Type: Valsala Weather Transmitter, WXT520

Serial number: K0630016

Manufacturer: Vaisala, Oyj, Pl 26, FIN-00421 Helsinki, Finland

Client: Aercoustics Engineering Ltd., 1004 Middlegate RD, Suite 1100, S.Tower, Mississauga, ON L4Y 1M4, Canada

Anemometer received: September 25, 2018

Calibrated by: MEJ

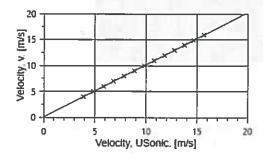
Anemometer calibrated: September 27, 2018

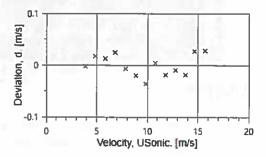
Procedure: MEASNET, IEC 61400-12-1:2017 Annex F

Certificate prepared by: EJF Approved by: Calibration engineer, EJF

Calibration equation obtained: $v \text{ [m/s]} = 1.01021 \cdot \text{f [m/s]} + 0.06780$

Standard uncertainty, slope: 0.00161 Covariance: -0.0000258 (m/s)2/m/s


Standard uncertainty, offset: 0.25078 Coefficient of correlation: $\rho = 0.999986$


Absolute maximum deviation: -0.036 m/s at 9.966 m/s

Barometric pressure: 1006.6 hPa

Relative humidity: 48.7%

Succession	Velocity	Tempera	iture in	Wind	Anemometer	Deviation,	Uncertainty
	pressure, q.	wind tunnel	d.p. box	velocity, v.	Output, f.	d.	u _c (k=2)
	[Pa]	[°C]	[°C]	[m/s]	[m/s]	[m/s]	[m/s]
2	9.23	25.7	26.7	3.978	3.8733	-0.002	0.020
4	14.46	25.8	26.7	4.979	4.8448	0.017	0.023
6	20.81	25.8	26.7	5.974	5.8333	0.013	0.026
8	28.37	25.8	26.7	6.975	6.8133	0.024	0.029
10	37.11	25.8	26.7	7.977	7.8367	-0.007	0.033
12	47.15	25.7	26.7	8.991	8.8533	-0.020	0.037
13-last	57.93	25.7	26.6	9.966	9.8345	-0.036	0.041
11	70.12	25.7	26.7	10.965	10.7833	0.004	0.045
9	83.59	25.7	26.7	11.973	11.8033	-0.019	0.049
7	98.00	25.7	26.7	12.965	12.7767	-0.009	0.053
5	113.49	25.7	26.7	13.953	13.7633	-0.019	0.057
3	129.60	25.7	26.7	14.911	14.6667	0.027	0.061
1-first	148.11	25.7	26.7	15.939	15.6833	0.028	0.065

in Jefler

EQUIPMENT USED

Serial Number	Description		
NjordI	Wind tunnel, blockage factor = 1.0035		
2254	Control cup anemometer		
	Mounting tube, $D = 19 \text{ mm}$		
ТТ002	Summit Electronics, 1XPT100, 0-10V Output, wind tunnel temp.		
TP001	PR Electronics 5102, 0-10V Output, differential pressure box temp.		
DP005	Setra Model 239, 0-1inWC, differential pressure transducer		
HY003	Dwyer RHP-2D20, 0-10V Output, humidity transmitter		
BP003	Setra M278, 0-5VDC Output, barometer		
PL8	Pitot tube		
XB002	Computer Board. 16 bit A/D data acquisition board		
9PRZRW1	PC dedicated to data acquisition		

Traceable calibrations of the equipment are carried out by external accredited institutions. Atlantic Scale, Essco Calibration Labs & Furness Controls. A real-time analysis module within the data acquisition software detects pulse frequency.

Photo of the wind tunnel setup. The cross-sectional area is 2,5m x 2.5m.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the IEC 61400-12-1:2005 procedure. See Document US.12.01.004 for further details.

COMMENTS

This sensor was calibrated at 90°.

Certificate number: 18.US1.05009

Tel 802.316.4368 · Fax 802.735.9106 · www.sohwind.com

CERTIFICATE FOR CALIBRATION OF SONIC ANEMOMETER

Certificate number: 17.US1.05800 Date of issue: July 10, 2017 Type: Vaisala Weather Transmitter, WXT520 Serial number: L3020298.0°

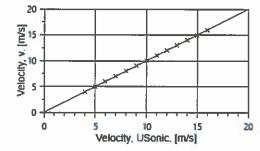
Manufacturer: Vaisala, Oyj, Pl 26, FIN-00421 Helsinki, Finland

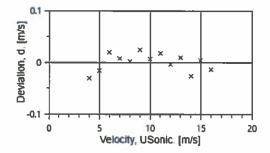
Client: Aercoustics Engineering Ltd., 1004 Middlegate RD, Suite 1100, S.Tower, Mississauga, ON L4Y 1M4, Canada

Anemometer received: July 10, 2017 Anemometer calibrated: July 10, 2017

Calibrated by: EJF Procedure: MEASNET, IEC 61400-12-1:2017 Annex F

Certificate prepared by: EJF Approved by: Calibration engineer, EJF


Calibration equation obtained: $v \text{ [m/s]} = 0.99845 \cdot \text{ f [m/s]} + 0.03088$


Standard uncertainty, slope: 0.00134 Standard uncertainty, offset: 0.46283 Covariance: -0.0000179 (m/s)2/m/s Coefficient of correlation: $\rho = 0.999990$

Absolute maximum deviation: -0.031 m/s at 3.974 m/s

Barometric pressure: 1001.0 hPa Relative humidity: 46.1%

-							
Succession	Velocity	Tempera	ature in	Wind	Anemometer	Deviation,	Uncertainty
	pressure, q.	wind tunnel	d.p. box	velocity, v.	Output, f.	d.	u _c (k=2)
	[Pa]	[°C]	[°C]	[m/s]	[m/s]	[m/s]	[m/s]
2	9.09	27.9	28.0	3.974	3.9800	-0.031	0.024
4	14.33	27.9	28.0	4.990	4.9828	-0.016	0.025
6	20.68	27.9	28.0	5.995	5.9533	0.020	0.027
8	28.29	27.9	28.0	7.011	6.9833	0.008	0.030
10	36.99	27.9	28.0	8.017	7.9967	0.002	0.032
12	47.04	27.9	28.0	9.041	9.0000	0.024	0.035
13-last	57.83	27.9	28.0	10.025	10.0034	0.007	0.038
11	70.02	27.9	28.0	11.031	11.0000	0.018	0.041
9	83.06	27.9	28.0	12.015	12.0067	-0.004	0.044
7	97.38	27.9	28.0	13.010	12.9900	0.009	0.048
5	112.72	27.9	28.0	13.998	14.0150	-0.027	0.051
3	128.84	27.9	28.0	14.965	14.9533	0.004	0.054
1-first	146.73	27.8	28.0	15.969	15.9767	-0.014	0.057

Ein Jefflel

EQUIPMENT USED

Serial Number	Description			
Njord1	Wind tunnel, blockage factor = 1.0035			
2254	Control cup anemometer			
ĭ	Mounting tube, $D = 19 \text{ mm}$			
TT003	Summit Electronics, 1XPT100, 0-10V Output, wind tunnel temp.			
TP001	PR Electronics 5102, 0-10V Output, differential pressure box temp.			
DP004	Setra Model 239, 0-1 in WC, differential pressure transducer			
HY002	Dwyer RHP-2D20, 0-10V Output, humidity transmitter			
BP001	Setra Model 278, barometer			
PL8	Pitot tube			
XB002	Computer Board. 16 bit A/D data acquisition board			
9PRZRW1	PC dedicated to data acquisition			

Traceable calibrations of the equipment are carried out by external accredited institutions: Atlantic Scale, & Furness Controls. A real-time analysis module within the data acquisition software detects pulse frequency.

Photo of the wind tunnel setup. The cross-sectional area is 2.5m x 2.5m.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the IEC 61400-12-1:2005 procedure. See Document US.12.01.004 for further details.

Certificate number: 17.US1.05800

Tel 802.316.4368 · Fax 802.735.9106 · www.sohwind.com

CERTIFICATE FOR CALIBRATION OF SONIC ANEMOMETER

Certificate number: 17.US1.05801 Date of issue: July 10, 2017 Serial number: L3020298.90° Type: Vaisala Weather Transmitter, WXT520

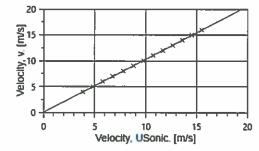
Manufacturer: Vaisala, Oyj, Pl 26, FIN-00421 Helsinki, Finland

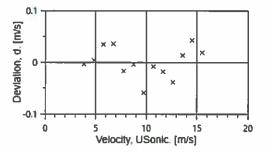
Client: Aercoustics Engineering Ltd., 1004 Middlegate RD, Suite 1100, S.Tower, Mississauga, ON L4Y 1M4, Canada

Anemometer received: July 10, 2017 Anemometer calibrated: July 10, 2017

Calibrated by: EJF Procedure: MEASNET, IEC 61400-12-1:2017 Annex F

Certificate prepared by: EJF Approved by: Calibration engineer, EJF


Calibration equation obtained: $v \text{ [m/s]} = 1.02647 \cdot \text{ f [m/s]} + 0.03997$


Standard uncertainty, slope: 0.00229 Standard uncertainty, offset: 0.60999 Covariance: -0.0000537 (m/s)2/m/s Coefficient of correlation: $\rho = 0.999971$

Absolute maximum deviation: -0.059 m/s at 10.008 m/s

Barometric pressure: 1000.7 hPa Relative humidity: 45.3%

					•		
Succession	Velocity	Tempera	ature in	Wind	Anemometer	Deviation,	Uncertainty
	pressure, q.	wind tunnel	d.p. box	velocity, v.	Output, f.	d.	u _c (k=2)
	[Pa]	[°C]	[°C]	[m/s]	[m/s]	[m/s]	[m/s]
2	9.12	28.5	28.1	3.985	3.8467	-0.003	0.024
4	14.35	28.5	28.1	4.999	4.8276	0.004	0.025
6	20.67	28.5	28.1	6.001	5.7733	0.034	0.027
8	28.20	28.5	28.1	7.008	6.7533	0.036	0.030
10	36.89	28.5	28.1	8.016	7.7867	-0.017	0.032
12	46.93	28.4	28.1	9.041	8.7733	-0.004	0.035
13-last	57.51	28.4	28.1	10.008	9.7690	-0.059	0.038
11	69.83	28.4	28.1	11.029	10.7133	-0.008	0.041
9	82.67	28.4	28.1	12.001	11.6700	-0.018	0.044
7	96.80	28.5	28.1	12.986	12.6500	-0.039	0.047
5	112.66	28.5	28.1	14.010	13.5967	0.014	0.051
3	129.03	28.5	28.1	14.993	14.5267	0.042	0.054
I-first	146.61	28.4	28.1	15.983	15.5133	0.019	0.057

EQUIPMENT USED

Serial Number	Description			
Njord1	Wind tunnel, blockage factor = 1.0035			
2254	Control cup anemometer			
	Mounting tube, $D = 19 \text{ mm}$			
TT003	Summit Electronics, 1XPT100, 0-10V Output, wind tunnel temp.			
TP001	PR Electronics 5102, 0-10V Output, differential pressure box temp.			
DP004	Setra Model 239, 0-linWC, differential pressure transducer			
HY002	Dwyer RHP-2D20, 0-10V Output, humidity transmitter			
BP001	Setra Model 278, barometer			
PL8	Pitot tube			
XB002	Computer Board. 16 bit A/D data acquisition board			
9PRZRW1	PC dedicated to data acquisition			

Traceable calibrations of the equipment are carried out by external accredited institutions: Atlantic Scale, & Furness Controls. A real-time analysis module within the data acquisition software detects pulse frequency.

Photo of the wind tunnel setup. The cross-sectional area is 2.5m x 2.5m.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the IEC 61400-12-1;2005 procedure. See Document US,12.01.004 for further details.

Certificate number: 17.US1.05801

CERTIFICATE of CALIBRATION

Make: PCB Piezotronics Reference #:

Model: 378B02 Customer: Aercoustics Engineering Ltd

Mississauga, ON

152970

Descr.: Microphone System 1/2" Free Field

Serial #: 132194 P. Order: 2018.06.15C

Asset #: 01163

Cal. status: Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer.

Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.

Our calibration system complies with the requirements of ISO-9001-2008 and is registered under certificate CA96/269, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated: Jun 20, 2018

By: Officer

Cal. Due: Jun 20, 2019

Petro Onasko

Temperature : 23 °C \pm 2 °C Relative Humidity : 30% to 70%

Standards used: J-216 J-333 J-512

Navair Technologies

REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST

6375 Dixie Rd. Mississauga, ON, L5T 2E7

Phone: 905 565 1584 Fax: 905 565 8325

http://www.navair.com e-Mail: service @ navair.com

The copyright of this document is the property of Navair Technologies

Any reproduction other than in full requires written approval!

6375 Dixie Rd Unit#7, Mississauga, ON L5T 2E7 Tel: (905)565-1583

Fax: (905)565-8325

Form:378B02	Approved by:	Feb-16	Ver 1.0

Calibration Report for Certificate:

152970

Make	Model	Serial	Asset
PCB Piezotronics	378B02	132194	01163
PCB Piezotronics	377B02	177759	01163

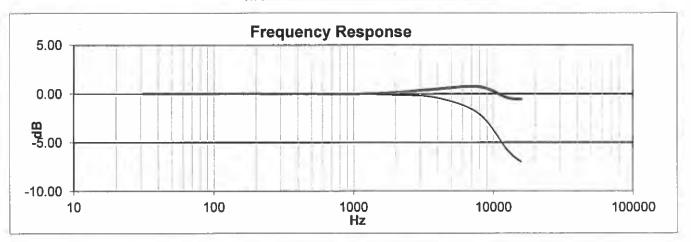
Sensitivity at 250Hz

Specs Nom	Unit	Min	Reading	Max	In/Out
50	mV/Pa	39.72	43.92	62.94	In
-26.02	dB re 1V/Pa	-28.02	-27.15	-24.02	In
0	dB re 50mV/Pa	-2	-1.13	2	In

Ambient Conditions:

Static Pressure 99.2 kPa

24.2°C


Temperature

Rel. Humidity

41.0%

Frequency response

11.070							
Lower	Upper						
Pressure	Free Field	1					
dB	dB						
0.03	0.01						
0.01	-0.01						
0.00	0.01						
0.00	0.00	ref					
-0.01	-0.01						
-0.05	-0.03						
-0.13	0.13						
-0.42	0.49						
-2.08	0.72]					
-5.84	-0.42]					
-7.01	-0.53]					
	Pressure dB 0.03 0.01 0.00 0.00 -0.01 -0.05 -0.13 -0.42 -2.08 -5.84	Pressure Free Field dB dB 0.03 0.01 0.01 -0.01 0.00 0.00 -0.01 -0.01 -0.05 -0.03 -0.13 0.13 -0.42 0.49 -2.08 0.72 -5.84 -0.42					

CERTIFICATE of CALIBRATION

Make: PCB Piezotronics Reference #: 154367

Model: 480E09 Customer: Aercoustics Engineering Ltd

Mississauga, ON

Descr.: Conditioning Amplifier

Serial #: 33660 P. Order: 2018.10.09C

Asset #: 00154

Cal. status: Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer.

Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.

Our calibration system complies with the requirements of ISO-17025 standard, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated: Oct 10, 2018 By

Cal. Due: Oct 10, 2020 Petro Onasko

Temperature : 23 °C \pm 2 °C Relative Humidity : 30% to 70%

Standards used: J-255 J-301 J-512

Navair Technologies

REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST

6375 Dixie Rd. Mississauga, ON, L5T 2E7

Phone: 905 565 1584 Fax: 905 565 8325

http://www.navair.com e-Mail: service @ navair.com

The copyright of this document is the property of Navair Technologies Any reproduction other than in full requires written approval!

6375 Dixie Rd Unit# 7 Mississauga, ON L5T 2E7

Tel: (905)565-1583 Fax: (905)565-8325

	Form: 480E09	Approved by: JR	Jun-18	ver 1.2
--	--------------	-----------------	--------	---------

Calibration Report for Certificate :

154367

Make	Model	Serial	Asset
PCB Piezotronics	480E09	00033660	00154

4	Test	Min	Reading	Max	In/Out

Gain accuracy at 1kHz

Gain Set	Input		V		
×1	1.000 V	0.9800	1.0000	1.0200	In
x10	0.100 V	0.9800	1.0003	1.0200	In
×100	0.010 V	0.9800	0.9992	1.0200	In

Gain Flatness

X1

10 Hz 1.000 V -5.0 -0.1	I/P		 	8
	10 Hz	1.000 V	-5.0	-0.1

10 Hz	[1.000 V	-5.0	-0.1	5.0	In
10 kHz	1.000 V	-5.0	0.0	5.0	In
50 kHz	1.000 V	-5.0	0.1	5.0	In
100 kHz	1.000 V	-5.0	0.2	5.0	In

X10

1/P					
10 Hz	0.100 V	-5.0	0.0	5.0	In
10 kHz	0.100 V	-5.0	0.0	5.0	In
50 kHz	0.100 V	-5.0	-0.3	5.0	In

-1.0

5.0

-5.0

X100

100 kHz

0.100 V

I/P			8		
10 Hz	0.010 V	-5.0	0.0	5.0	In
10 kHz	0.010 V	-5.0	-0.1	5.0	In
50 kHz	0.010 V	-5.0	-4.6	5.0	In

Ιn

Appendix H I-Audit Checklist

Appendix F7: I-Audit checklist
Wind Energy Project – Screening Document – Acoustic Audit Report – Immission
Information Required in the Acoustic Audit Report – Immission

Item	Description	Complete?	Comment
1	Did the Sound level Meter meet the Type 1 Sound level meter	✓	
	requirements according to the IEC standard 61672-1 Sound level		
	Meters, Part 1: Specifications? Section D2.1.1		
2	Was the complete sound measurement system, including any	✓	
	recording, data logging or computing systems calibrated immediately		
	before and after the measurement session at one or more frequencies		
	using an acoustic calibrator on the microphone (must not exceed		
	±0.5dB)? Section D2.1.3		
3	Are valid calibration certificate(s) of the noise monitoring equipment and	✓	
	calibration traceable to a qualified laboratory? Is the validity duration of		
	the calibration stated for each item of equipment? Section D2.3		
	· ·		
4	Was the predictable worst case parameters such as high wind shear	✓	
	and wind direction toward the Receptor considered? Section D3.2		
5	Is there a Wind Rose showing the wind directions at the site? Section	✓	
	D7 (1e)		
6	Did the results cover a wind speed range of at least 4-7 m/s as outlined	✓	
	in section D 3.8.?		
7	Was the weather report during the measurement campaign included in	✓	
	the report? Section D7 (1c)		
8	Did the audit state there was compliance with the limits at each wind	✓	
	speed category? Section D6		
9	Are pictures of the noise measurement setup near Point of reception	✓	
	provided? Section D3.3.2 & D3.4		
10	Was there justification of the Receptor location choice(s) prior to	✓	
	commencement of the I-Audit? Section D4.1		
11	Was there sufficient valid data for different wind speeds? Section D5.2 #	✓	
	3	√	
12	Was the turbine (operational) specific information during the	· ·	
	measurement campaign in tabular form (i.e. wind speed at hub height,		
	anemometer wind speed at 10 m height, air temperature and pressure		
- 10	and relative humidity) Section D3.7		
13	Were all the calculated standard deviations at all relevant integer wind	· ·	
4.4	speeds provided? Section D7 (2d)	√	
14	Compliance statement	√ ✓	
15	All data included in an Excel spreadsheet	0	
16	If deviations from standard; was justification of the deviations provided	0	No Deviations

Appendix I Distance Correction - M1153

M1153		R115;	R1153		
	17T 620902mE		- 17T 621067mE		
Monitor Coordinates	4749669mN	Receptor Coordinates	4749725mN		
	Partial Impact		Partial Impact		
Source ID	at Monitor [dBA]	Source ID	at Receptor [dBA]		
T20	40.3	T20	37.4		
T96	30.8	T96	31.9		
T63	27.3	T63	28.2		
T99	25.8	T62	25.6		
T62	24.8	Т99	24.7		
T05	24.6	T05	24.4		
T46	22.4	T46	23.3		
T47	22.2	T47	22.8		
T45	19.6	T45	20.2		
T16	17.9	T16	18.6		
T14	17.7	T14	18.2		
T44	16.5	T44	17		
T48	15.9	T48	16.5		
T43	15.3	T43	15.8		
T84	15.1	T22	15.4		
T42	15	T84	15.4		
T22	14.9	T89	15.1		
T89	14.6	T42	15		
T21 T98	14.1	T21	14.6 13.7		
T61	13.8 13.3	T61 T98	13.7		
T65	13.3	T65	11.3		
T82	10	T19	10		
T19	9.9	T49	10		
T49	9.6	T82	10		
T13	8.5	T13	8.6		
T23	8	T23	8.4		
T12	7.9	T12	8		
GREPT58	7.8	T24	7.9		
GREPT60	7.6	T91	7.7		
GREPT61	7.6	GREPT58	7.4		
T24	7.6	GREPT60	7.2		
T91	7.6	GREPT61	7.2		
GREPT62	7.1	T41	7		
GREPT57	6.9	GREPT62	6.7		
T41	6.9	MH05	6.7		
GREPT59	6.6	GREPT57	6.5		
MH05	6.5	T72	6.4		
T72	6.3	GREPT59	6.2		
MH02	6.1	MH02	6.2		
RFT	5.1	MH04	5.1		
MH04	4.9	RFT	5		
ST2	3.8	ST2	4.1		
T37	2.7	T37	2.8		
MH06	2.2	MH06	2.3		
WF01 WF02	1.5	WF01 WF02	1.8		
WF03	1.1 0.9	WF03	1.3 1.2		
WF03 MH01		WF03 MH01			
MH03	0.5 0.2	MH03	0.6 0.4		
IVII IIVI	0.2	WF05	0.4		
		WF04	0.2		
Overall Level	41.6	Overall Level	39.9		
Turbine ONLY correction	11.0	1.7dB	57.7		

